

Towards the development of a therapeutic RNA editing platform

Chikdu Shivalila

Presented at Deaminet 2022 January 24, 2022

<u>Chikdu Shivalila</u>, P Monian, G Lu, C Acker, B Bhattarai, D Boulay, K Bussow, M Byrne, A Chatterjee, D Chew, O Chivatakarn, J Desai, F Favaloro, J Godfrey, I Harding, A Hoss, N Iwamoto, T Kawamoto, N Kothari, J Kumarasamy, P Kandasamy, A Lamattina, A Lindsey, F Liu, R Looby, J Metterville, R Murphy, J Rossi, S Standley, S Tripathi, H Yang, Y Yin, H Yu, C Zhou, PH Giangrande, C Vargeese

Forward-looking statements

This document contains forward-looking statements. All statements other than statements of historical facts contained in this document, including statements regarding possible or assumed future results of operations, preclinical and clinical studies, business strategies, research and development plans, collaborations and partnerships, regulatory activities and timing thereof, competitive position, potential growth opportunities, use of proceeds and the effects of competition are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause the actual results, performance or achievements of Wave Life Sciences Ltd. (the "Company") to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "contemplate," "believe," "estimate," "predict," "potential" or "continue" or the negative of these terms or other similar expressions. The forward-looking statements in this presentation are only predictions. The Company has based these forward-looking statements largely on its current expectations and projections about future events and financial trends that it believes may affect the Company's business, financial condition and results of operations. These forward-looking statements speak only as of the date of this presentation and are subject to a number of risks, uncertainties and assumptions, including those listed under Risk Factors in the Company's Form 10-K and other filings with the SEC, some of which cannot be predicted or quantified and some of which are beyond the Company's control. The events and circumstances reflected in the Company's forward-looking statements may not be achieved or occur, and actual results could differ materially from those projected in the forward-looking statements. Moreover, the Company operates in a dynamic industry and economy. New risk factors and uncertainties may emerge from time to time, and it is not possible for management to predict all risk factors and uncertainties that the Company may face. Except as required by applicable law, the Company does not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

Innovating stereopure backbone chemistry modifications

PRISM backbone linkages

LIFE SCIENCES

PO: phosphodiester PS: phosphorothioate PN: phosphoryl-guanidine

Stereochemistry

RNA editing with AIMers: A-to-I editing oligonucleotides

Free-uptake of chemically modified oligonucleotides

LIFE SCIENCES

- First publication (1995) using oligonucleotide to edit RNA with endogenous ADAR¹
- Wave goal: Expand toolkit to include editing by unlocking ADAR with PRISM oligonucleotides

- Learnings from biological concepts
- Applied to ASO structural concepts
- Applied Wave's proprietary PRISM chemistry

AIMer: Wave's A-to-I editing oligonucleotides

- ADAR enzymes
- Catalyze conversion of A-to-I (G) in doublestranded RNA substrates
- A-to-I (G) edits are one of the most common post-transcriptional modifications
- ADAR1 is ubiquitously expressed across tissues, including liver and CNS

GalNAc-AIMers enable durable and specific editing out to day 50 in liver of NHPs

LIFE SCIENCES

AIMer tissue concentration (left) and editing activity (middle) in liver after 5 mg/kg SC injections on days 1-5; Right: Hepatocytes treated with 1 uM AIMer, 48 hrs later RNA collected, RNAseq conducted using strand-specific libraries to quantify editing; plotted circles represent sites with LOD>3. NHP: non-human primate; ACTB: Beta-actin; Monian *et al.*, manuscript in press

Efficient and durable editing in mouse CNS with unconjugated AIMer

Peak editing observed 4-weeks post-single ICV dose across tissues

Transgenic huADAR mice were administered 100 μ g AIMer or PBS on day 0 and evaluated for UGP2 editing across CNS tissues at 1, 4, 8, 12 and 16-weeks post dose. Percentage UGP2 editing determined by Sanger sequencing. Stats: 2-way ANOVA with post-hoc comparison to PBS (n=5 per time point per treatment) *P<0.05, **P<0.01, ***P<0.001, ****P<0.001. ICV intracerebroventricular; PBS phosphate buffered saline

Productive editing beyond liver and CNS with unconjugated AIMers

(left): non-human primate (NHP) 50 mg/kg beta-Actin (ACTB) AIMer, SC (subcutaneous) on day 1; Necropsy for editing day 8; (top right): Mice received 10 or 50 µg UGP2 AIMer intravitreal (IVT), eye collected for analysis 1 or 4 weeks later. (lower right): Human PBMCs dosed with 10 µM ACTB AIMers, under activating conditions (PHA). After 4 days, different cell types isolated, quantitated for editing.

LIFE SCIENCES

An ADAR editing approach to correct Alpha-1 antitrypsin deficiency (AATD)

Objectives

- Recruit endogenous ADAR enzyme to edit SERPINA1 Z mRNA
- Restore circulating M-AAT protein to expected therapeutic threshold (11 μ M)
- Confirm functionality of M-AAT
- Confirm specificity of SERPINA1 editing

Inverse relationship between circulating AAT levels and disease risk

Optimized AIMers achieve ~50% mRNA editing and restore AAT protein well above therapeutic threshold in mouse model

Left: AIMers administered huADAR/SERPINA1 mice (3x5 mg/kg) on days 0, 2, and 4. Livers collected on day 7, and SERPINA1 editing was quantified by Sanger sequencing (shown as mean ±. sem) Stats: One-way ANOVA was used to test for differences in editing between SA1-4 and other oligos * P<0.05 Right: huADAR/SERPINA1 mice administered PBS or 3 x 10 mg/kg AIMer (days 0, 2, and 4) SC. Proportion of AAT protein in serum, Z type or M type, measured by mass spectrometry, total AAT protein levels quantified by ELISA.

Durable restoration of functional, M-AAT protein with ADAR editing

Human AAT serum concentration ≥3-fold higher over 30 days post-last dose

Restored wild-type M-AAT detected over 30 days post-last dose

LIFE SCIENCES

(left) SA1-4 (GalNAc AIMer) or PBS administered to hu*ADAR/SERPINA1* mice (3 x 10 mg/kg on days 0, 2, 4) SC. Serum AAT quantified by ELISA. (right) AAT quantified by ELISA; M-AAT and Z-AAT distinguished by mass spectrometry.

ADAR editing is highly specific; no bystander editing observed on SERPINA1 transcript

LIFE SCIENCES

Dose 3 x 10mg/kg days (0, 2, 4) SC. Liver biopsies day 7. RNAseq, To quantify on-target SERPINA1 editing reads mapped to human SERPINA1, to quantify off-target editing reads mapped to entire mouse genome; plotted circles represent sites with LOD>3 (N=4); Analyst and Investor Research Webcast September 28, 2021

Apply AIMers to modify protein-protein interactions

293T cells transfected with 20 nM of AIMer, ADAR-p110 or ADAR-p150 plasmid. RNA collected 48h later, editing quantified by PCR and Sanger (n=2).

LIFE SCIENCES

ADAR editing activates multiple genes, confirming disrupted protein-protein interaction *in vitro*

ADAR editing of either KEAP1 or NRF2 directs gene activation

Summary

- AIMers represent Wave's therapeutic RNA editing platform that leverages endogenous ADAR proteins
 - Achieve potent and specific editing
 - Support durable activity
 - Amenable to multiple routes of administration
 - Active in animals as GalNAc-conjugates or unconjugated
- AIMers restore expression of functional protein
 - Correct SERPINA1 Z mutation in mouse hepatocytes to durably express functional, secreted Z-AAT protein
- AIMers modulate protein-protein interactions
 - Disrupt KEAP1-NRF2 interface to activate downstream transcription in cells

