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Enhancing editing activity of AIMers through

application of PRISM chemistry
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Concentration AlMer (ug/g tissue)

Proof-of-concept preclinical RNA editing data
published in Nature Biotechnology (March 2022)

namre ARTICLES
biotechnology Je— ARTICLES

. Specificity in vitro & in vivo (NHPs) - GalNAc conjugation

Endogenous ADAR-mediated RNA editing in - In vitro-in vivo translation (NHPs) -  Foundational AIMer SAR
non-human primates using stereopure chemically

modified oligonucleotides
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Base and ribose modifications at the edit site
increase editing
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Cyt: Cytosine; 8-oxo dA: 8-Oxo-2'-deoxyadenosine; N3 U: N3 Uridine; X: modified sugar; DNA: deoxyribose

. Primary mouse hepatocytes from human ADAR1/SERPINA1 transgenic mice (Right) Primary mouse hepatocytes treated with AIMers with the indicated
WAV E edit site modifications. RNA editing was quantified by Sanger sequencing.
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Edit site base modification increases editing
across edit region sequences
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Primary mouse hepatocytes from human ADAR1 transgenic mice were treated with 3 uM AIMers that varied by edit region sequence and edit site base
modification for 72 hours. RNA editing was quantified by Sanger sequencing. Stats: Two Tailed T-test: * p<0.05, **p<0.005, ***p<0.001

Based modification increases UGP2
RNA editing across sequences
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% N3 U consistently increases
editing across numerous
nearest neighbor pairings

% Pronounced impact for
editing GAU and GAA
sequences

+ Additional sequence
screening with N3 U ongoing




Chemical optimization improves RNA editing in
vitro across sequences
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: Human SF8628 and primary human astrocytes were treated with old and new AIMers of the same sequence.
RNA editing was quantified by Sanger sequencing.
First-gen design based on Monian et al., 2022 Nature Biotechnol doi: 10.1038/s41587-022-01225-1
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2'-chemistry and backbone modifications enhance editing
largely through improved uptake UGP2 editing

(primary mouse hepatocytes)
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Top right: Hep3B cells were treated gymnotically or by transfection with UGP2-targeting AIMers. Bottom right: Primary murine hepatocytes were treated
gymnotically (3 pM AIMer) and collected at the indicated time point. RNA editing was quantified by Sanger sequencing. AIMer concentration was quantified
by hybridization ELISA immediately after 6-hr pulse or 96-hrs later. Stats: One-way ANOVA or mixed effects models, **** p<0.0001, ns significant.
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PN chemistry improves target engagement, AIMer uptake,
& editing efficiency in primary mouse hepatocytes

UGP2* editing following 6 hr AIMer pulse
Cell-free system (primary mouse hepatocytes)
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WAV E Primary murine hepatocytes were treated gymnotically for 6-hr with 3 pM AIMer. Cells were refreshed with maintenance media and collected at the indicated
time point. Editing was quantified by Sanger sequencing. AIMer concentration was quantified by hybridization ELISA. Stats: Top left, a mixed effects model Top
LIFE SCIENCES  right, One-way ANOVA * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns not significant.
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Impact of PN chemistry highlighted in four high-
2022

impact publications

ARTICLES

Endogenous ADAR-mediated RNA editing in

non-human primates using stereopure chemically

modified oligonucleotides
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Expanding addressable disease target space using
AIMers to activate pathways and upregulate expression

Restore or correct
protein function

WVE-006
(GalNAc AIMer)
AATD

WAVE
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Novel applications beyond

mutation correction
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Modulate protein- _
protein interaction Achieved

POC
Upregulate expression
Modify function

Post-translational
modification

Alter folding or processing

of genetic mutations, including upregulation of expression,

0 AlIMers provide dexterity, with applications beyond precise correction
modification of protein function, or altering protein stability




Nrf2 is an antioxidant transcription factor negatively
regulated by Keapl through Nrf2-Keap1l binding
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WAV E Left: Adapted from Int. J. Mol. Sci. 2019, 20(13), 3208; https://doi.org/10.3390/ijms20133208
Right: Adapted from Free Radical Biology and Medicine, 2015, 88, 101-107; https://doi.org/10.1016/j.freeradbiomed.2015.05.034
LIFE SCIENCES Note: Q26, D27, and 128 appear on the Nrf2 DLG motif; E82 appears on the Nrf2 ETGE motif.
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Dose-dependent modulation of protein/protein
|nteraCt|0nS in Vitro Dose-dependent gene upregulation (NQO1) in

vitro following Nrf2 editing to disrupt
protein/protein interaction
(primary hepatocytes)
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Modulation of protein-protein interactions: AIMers enable
activation of gene pathway in vivo with single edit
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Upregulation: AIMers can edit RNA motifs to restore
or upregulate gene expression

RNA binding proteins recognize sequence motifs to regulate various mRNA properties
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AIMers can edit RNA motifs to upregulate gene
expression in hepatocytes and T-cells in vitro

Editing RNA Motifs to regulate RNA half-life to upregulate RNA expression is possible
for clinically-relevant targets, including both metabolic and immune targets
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Achieving >2-fold mRNA upregulation in vitro across
: multiple different targets with AIMer editing
WAVE

Presented at ASGCT 26t Annual Meeting (May 2023)



AIMers upregulate mRNA and downstream serum
protein in vivo above anticipated threshold

Target A mRNA editing mRNA upregulation Protein upregulation
(undisclosed liver 7 days post-initial dose 7 days post-initial dose 7 days post-initial dose
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Systemic in vivo editing without delivery vehicles

Editing: Potent, durable, specific A > I (G) RNA editing Substantial RNA editing across multiple tissues
. . L L following single subcutaneous dose of UGP2 AIMer
Delivery: Efficient RNA editing in preclinical in vivo
models: | S?ErllﬁtzmllxIMer (unconjugated) Specific liver associated cells
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Right: Single dose of 100mg/kg unconjugated UGP2 AIMer, seven days post dose; WAT: White adipose tissue; BAT: Brown adipose tissue; CD3+: T-cells and subset of NK cells;
EpCAM+ (Epithelial cell adhesion molecule): mainly cholangiocytes within liver; LSEC cells (Liver Sinusoidal Endothelial Cells); MO cells: macrophages




Vast opportunity for AIMers across disease areas

Potential to address diseases with large
patient populations, independent of genetic
mutation status

“OY GSK collaboration provides Wave with
proprietary genetic insights to expand our
pipeline with both partnered and wholly
owned Wave programs

Anticipate investor event in 3Q 2023 during which Wave will demonstrate
how it is continuing to extend its leadership in RNA editing and share
preclinical data




Conclusions

AlIMers incorporate Wave's best-in-class, proprietary oligonucleotide chemistry, including PN backbone
linkages which increase potency, durability and distribution and carry a neutral charge to stabilize AIMer
constructs

AlIMer design principles have enabled Wave to rapidly expand RNA editing capabilities and advance first RNA
editing clinical candidate for correction of SERPINA1 transcript point mutation

Enormous opportunity exists for downstream applications of AIMers, which can significantly increase target
universe and unlock access to novel disease biology

Wave is pioneering proprietary therapeutic approaches by using AIMers to upregulate mRNA and increase
levels of endogenous proteins

Disrupting protein-protein interactions or upregulation approaches have potential to address diseases with
large patient populations and may allow mutation-independent strategies

Wave is actively exploring downstream applications of AIMers

Investor event anticipated in 3Q 2023

WAVE
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