WAVE[®] LIFE SCIENCES

RNA base editing for the treatment of Alpha-1 antitrypsin deficiency

Prashant Monian

Senior Scientist II, Biology

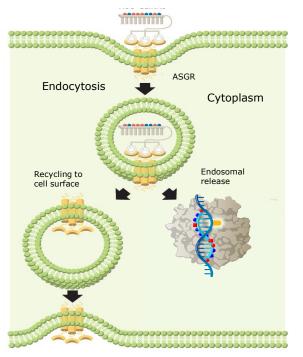
May 17, 2023

26th Annual ASGCT meeting, May 16-20, 2023

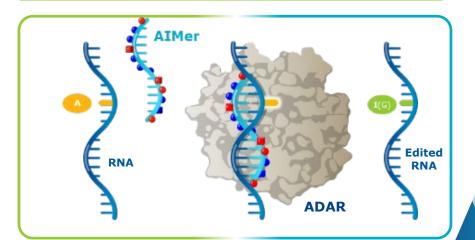
Disclosures

Prashant Monian, Chikdu Shivalila, Genliang Lu, Keith Bowman, Marissa Bylsma, Michael Byrne, Megan Cannon, Jigar Desai, Alyse Faraone, Frank Favaloro, Anamitra Ghosh, Jack Godfrey, Nidia Hernandez, Naoki Iwamoto, Tomomi Kawamoto, Jayakanthan Kumarasamy, Pachamuthu Kandasamy, Anthony Lamattina, Muriel Lemaitre, Amber Lindsey, Fangjun Liu, Richard Looby, Khoa Luu, Jake Metterville, Ik-Hyeon Paik, Qianli Pan, Tom Pu, Erin Purcell-Estabrook, Jeanette Rheinhardt, Mamoru Shimizu, Kuldeep Singh, Stephany Standley, Carina Thomas, Snehlata Tripathi, Hailin Yang, Ryan Yordanoff, Yuan Yin, Hui Yu, Padma Narayanan, Paloma H. Giangrande, Chandra Vargeese

All authors are employees of Wave Life Sciences

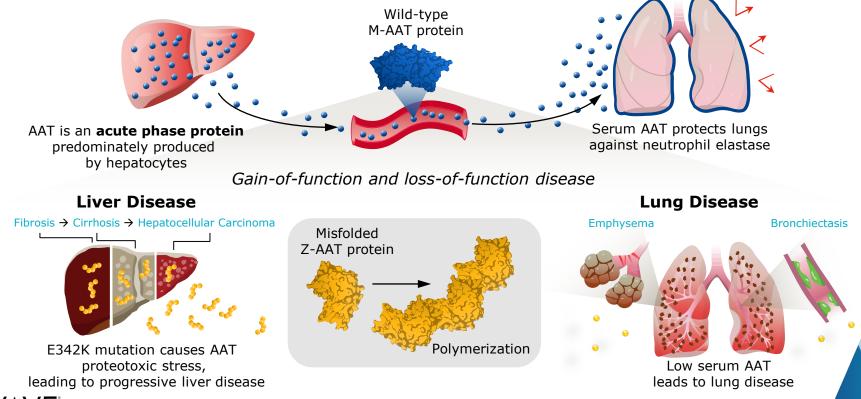

Forward-looking statements

This document contains forward-looking statements. All statements other than statements of historical facts contained in this document, including statements regarding possible or assumed future results of operations, preclinical and clinical studies, business strategies, research and development plans, collaborations and partnerships, regulatory activities and timing thereof, competitive position, potential growth opportunities, use of proceeds and the effects of competition are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause the actual results, performance or achievements of Wave Life Sciences Ltd. (the "Company") to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "contemplate," "believe," "estimate," "predict," "potential" or "continue" or the negative of these terms or other similar expressions. The forward-looking statements in this presentation are only predictions. The Company has based these forward-looking statements largely on its current expectations and projections about future events and financial trends that it believes may affect the Company's business, financial condition and results of operations. These forward-looking statements speak only as of the date of this presentation and are subject to a number of risks, uncertainties and assumptions, including those listed under Risk Factors in the Company's Form 10-K and other filings with the SEC, some of which cannot be predicted or quantified and some of which are beyond the Company's control. The events and circumstances reflected in the Company's forward-looking statements may not be achieved or occur, and actual results could differ materially from those projected in the forward-looking statements. Moreover, the Company operates in a dynamic industry and economy. New risk factors and uncertainties may emerge from time to time, and it is not possible for management to predict all risk factors and uncertainties that the Company may face. Except as required by applicable law, the Company does not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

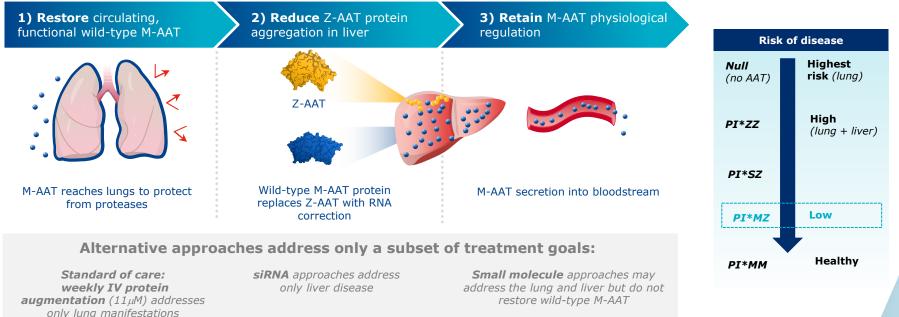

AIMers: A-to-I RNA editing oligonucleotides

GalNAc-mediated delivery

Optimize AIMer design


- ✓ Substrate learnings from biology and structures
- Applied to oligonucleotides
- ✓ Applied PRISM[™] chemistry

¹Woolf et al., 1995 Proc Natl Assoc Sci 92:8298-8302; Monian et al., 2022 Nature Biotech doi: 10.1038.s41587-022-01225-1


SERPINA1 Z mutation: The most common cause of Alpha-1 antitrypsin deficiency (AATD)

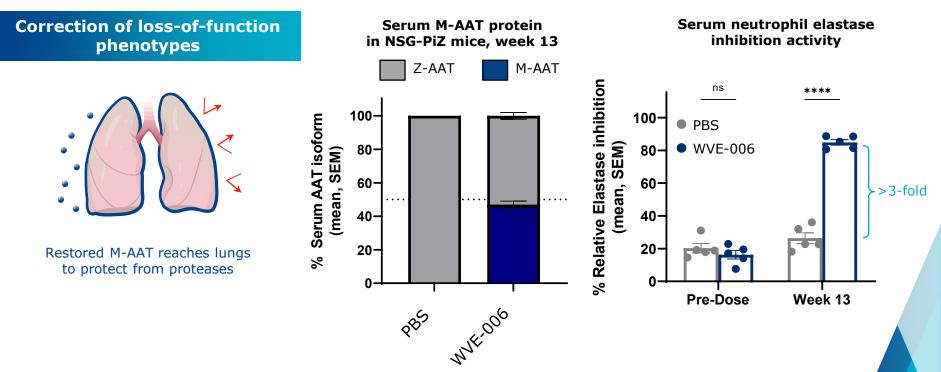
RNA editing is uniquely suited to address the therapeutic goals of AATD

Wave ADAR editing approach potentially addresses all treatment goals:

~200K people in US and EU with mutation in SERPINA1 Z allele (PI*ZZ)

WAVE[°] LIFE SCIENCES

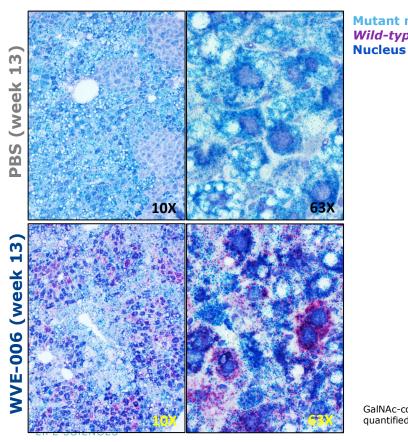
AAT: Alpha-1 antitrypsin Strnad et al., 2020 N Engl J Med 382:1443-55; Blanco et al., 2017 Int J Chron Obstruct Pulmon Dis 12:561-69; Remih et al., 2021 Curr Opin Pharmacol 59:149-56.

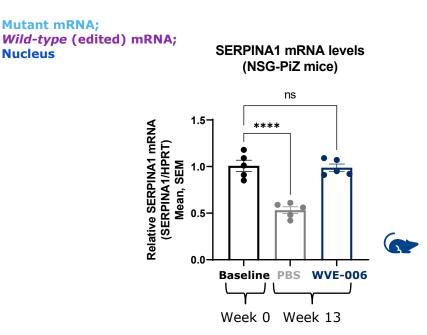

WVE-006 results in circulating AAT protein levels well above established 11 μ M threshold *in vivo*

WVE-006 treatment results in serum AAT protein SERPINA1 mRNA editing in liver of levels >11 uM in AATD mouse model (NSG-PiZ mice) AATD mouse model (NSG-PiZ mice, week 13) 2000-PBS SERPINA1 RNA Editing 1800-Week 13 **WVE-006** Serum AAT protein (µg/ml) **Restored AAT protein** 1600-60-WVE-006 (NO LOADING DOSE) **SERPINA1** editing ~7-fold 1400-SEM) increase % Editing (Mean, SEM) 1200-40-(Mean, 1000-800-20 600-11uM 400 200-2¹⁶⁵ WYE.006 WYE:006 INO LOADING DOSE 0. 8 11 12 13 n 5 9 10 6 10 ma/ka SC dose

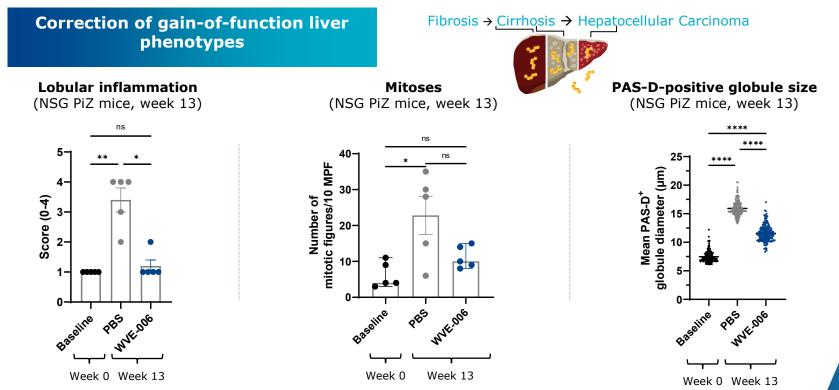
LIFE SCIENCES

WVE-006 is a GalNAc-conjugated AIMer (A to I(G) RNA base editing oligonucleotide); WVE-006 administered in 7-week old NSG-PiZ mice (n=5 per group); Left: Total serum AAT protein quantified by ELISA; Stats: 2-way ANOVA with Dunnett post-hoc comparison to PBS ****<0.0001, *** <0.001; Right: Liver biopsies collected at week 13 (one week after last dose) and SERPINA1 editing was quantified by Sanger sequencing; Stats: 1-way ANOVA with Tukey post-hoc comparisons between all groups (only difference between dose groups shown) ns=non-significant


WVE-006 restores serum M-AAT protein in mice, increases serum neutrophil elastase inhibition

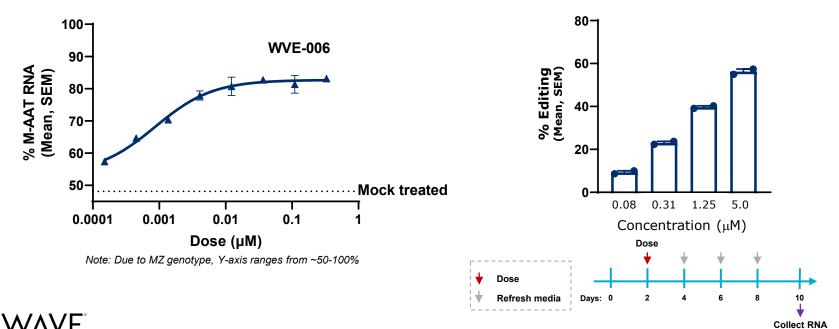


GalNAc-conjugated AIMers administered in 7-week old NSG-PiZ mice (n=5 per group). Proportion of AAT protein in serum measured by mass spec, total AAT protein quantified by ELISA. Serum collected from mice was tested for ability to inhibit fixed concentration of neutrophil elastase in an *in vitro* reaction. Stats: 2-way ANOVA with Bonferroni post-hoc for comparisons between PBS and WVE-006


RNA editing preserves expression of *SERPINA1* transgene in liver of treated mice

GalNAc-conjugated AIMers administered in 7-week old NSG-PiZ mice (n=5 per group). mRNA expression quantified by qPCR. Stats: 1-way ANOVA with Dunnet post-hoc test for multiple comparisons

WVE-006 decreases lobular inflammation and PAS-D globule size, prevents increase in hepatocyte turnover



Left (Lobular inflammation) and Middle (Mitoses): Scatter plot showing inflammation grade or mitoses score. Each circle represents an individual mouse, (Mean ± SEM); Right (PAS-D Globule Size): 40 largest globules in each of 5 mice were measured. Each circle represents a single PAS-D globule, (Mean ± SEM). Baseline: week 0 (7 weeks old); Treated week 13 (20 weeks old); Stats: Kruskal-Wallis followed by Dunn's test

WVE-006 supports dose-dependent RNA editing in human preclinical model systems

Efficient SERPINA1 editing in donor-derived primary human hepatocytes with WVE-006 (MZ genotype) Editing in iPSC-derived human hepatocytes with WVE-006 (ZZ genotype)

Primary human hepatocytes with MZ (left) or ZZ (right) genotype treated with WVE-006 at the indicated concentrations. Percentage editing was
determined by Sanger sequencing.

Conclusions

- We have developed RNA editing oligonucleotides AIMers intended to correct homozygous "ZZ" mutations to an "MZ" heterozygous state, and address both lung and liver phenotypes associated with AATD
- Investigational lead, WVE-006, drives serum AAT protein levels in AATD mouse model above 11 μ M the anticipated therapeutic threshold¹
- Restored serum M-AAT inhibits neutrophil elastase, indicating the protein is functional and may protect lungs from damage
- Repeat dosing with WVE-006 reduces lobular inflammation and PAS-D globule size, and prevents increase in hepatocyte turnover in mouse liver
- WVE-006 supports dose-dependent RNA editing in human cellular models for AATD
- CTA submission for first-in-human study expected in 2H 2023

Thanks to all colleagues and contributors from Wave Life Sciences and our collaborators

biotechnology

nature

Endogenous ADAR-mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides

Prashant Monian¹², Chikdu Shivalila¹², Genliang Lu¹, Mamoru Shimizu¹, David Boulay¹, Karley Bussow¹, Michael Byrne¹, Adam Bezigian¹, Arindom Chatterjee¹, David Chew¹, Jigar Desai¹, Frank Favaloro¹, Jack Godfrev¹, Andrew Hoss¹, Naoki Iwamoto¹, Tomomi Kawamoto¹, Javakanthan Kumarasamv¹, Anthony Lamattina¹, Amber Lindsev¹, Fangiun Liu¹, Richard Loobv¹, Subramanian Marappan¹, Jake Metterville¹, Ronelle Murphy¹, Jeff Rossi¹, Tom Pu¹, Bijay Bhattarai^{O1}, Stephany Standley¹, Snehlata Tripathi¹, Hailin Yang¹, Yuan Yin¹, Hui Yu¹, Cong Zhou⁰¹, Luciano H. Apponi¹, Pachamuthu Kandasamy¹ and Chandra Vargeese^[]

Technologies that recruit and direct the activity of endogenous RNA-editing enzymes to specific cellular RNAs have therapeutic potential, but translating them from cell culture into animal models has been challenging. Here we describe short, chemically modified oligonucleotides called AlMers that direct efficient and specific A-to-I editing of endogenous transcripts by endog enous adenosine deaminases acting on RNA (ADAR) enzymes, including the ubiquitously and constitutively expressed ADARI p110 isoform. We show that fully chemically modified AIMers with chimeric backbones containing stereopure phosphorothioate and nitrogen-containing linkages based on phosphoryl guanidine enhanced potency and editing efficiency 100-fold compared with those with uniformly phosphorothioate-modified backbones in vitro. In vivo, AlMers targeted to hepatocytes with N-acetylgalactosamine achieve up to 50% editing with no bystander editing of the endogenous ACTB transcript in non-human primate liver, with editing persisting for at least one month. These results support further investigation of the therapeutic potential of stereopure AlMers.

human disease. The most common mutation in human genes is transition from cytosine (C) to thymine (T)1, and CpG dinucleotides are well established hot spots for disease-causing mutations¹. The ADAR family of enzymes catalyze adenine (A)-to-inosine (I) changes in the transcriptome1-7. Because I is read as guanine (G) nucleotides, called AIMers, are short and fully chemically modified by the translational machinery 8.9, ADAR-mediated RNA editing has the potential to revert these disease-causing transitions at the RNA (PN) linkages based on phosphoryl guanidine. In vitro, they level. The potential scope for application of A-to-I editing is large, enhanced potency and A-to-I editing efficiency compared to uniincluding modulation of polar or charged amino acids, stop codons formly PS-modified AIMers, and in vivo, N-acetylgalactosamine or RNA regulatory sequences^{10,11}, eliciting diverse functional outcomes (for example, restored protein expression or function)11.

Chemical modifications are known to confer drug-like properties to oligonucleotides. We set out to determine whether control over backbone chemistry and stereochemistry and other chemical modifications to an oligonucleotide (Fig. 1 and Supplementary Note AIMers support RNA editing. To evaluate RNA-editing efficiency 1) can be optimized to elicit sequence-specific A-to-I RNA editing in mammalian cells, we created a luciferase reporter with genes with endogenous ADAR enzymes. As therapeutics, reversible RNA editing with oligonucleotides may represent a safer option than ing, only Gluc is expressed, whereas A-to-I editing permits expresthose that edit genomic DNA7. Early technologies designed to elicit sion of Cluc, providing a measure of RNA-editing efficiency and RNA editing in vitro required an exogenous enzyme and an oligo-protein expression (Extended Data Fig. 1a). AIMers were designed nucleotide¹³⁻¹⁷. These approaches led to overexpression of editing to mimic naturally occurring double-stranded RNA ADAR subenzyme and substantial off-target editing (21436-1), Recent advances strates, as in the GluR2 transcript (0.1230 (Extended Data Fig. 1b). have overcome the need for exogenous enzymes in vitro¹⁸⁻²⁰, but they still use long oligonucleotides that require ancillary delivery reporter and exogenous ADAR enzyme in the presence or absence

C ecruiting endogenous RNA-editing enzymes using chemi- vehicles, such as viral vectors or lipid nanoparticles, for application cally modified oligonucleotides holds promise for treating beyond cell culture". So far, these technologies have yielded nominal editing in vivo

Leveraging our oligonucleotide chemistry platform, we developed relatively short oligonucleotides that elicit A-to-I RNA editing with high efficiency using endogenous ADAR enzymes. These oligo with stereopure phosphorothioate (PS) and nitrogen-containing (GalNAc)-modified AIMers achieved up to 50% editing with no bystander editing in non-human primate (NHP) liver that persisted for at least 1 month.

ARTICLES

Check for updates

https://doi.org/10.1038/s41587-022-01225-1

Results from Gaussia (Gluc) and Cypridinia (Cluc). In the absence of edit-To benchmark RNA editing, we transfected 293T cells with the

Preclinical RNA editing data published in Nature Biotechnology (March 2022)

- Foundational AIMer SAR •
- GalNAc conjugation ۰
- In vitro-in vivo translation (NHPs) •
- Specificity in vitro & in vivo (NHPs)

Wave Life Sciences, Cambridge, MA, USA #These authors contributed equally: Prashant Monian, Chikdu Shivalila. Re-mail: cvareese@wavelifesci.com

NATURE BIOTECHNOLOGY I www.nature.com/naturebiolechnolog

Monian et al., 2022 published online Mar 7, 2022; doi: 10.1038.s41587-022-01225-1 SAR structure-activity relationship