

Wave Life Sciences First Quarter 2020 May 11, 2020

Forward-looking statements

This document contains forward-looking statements. All statements other than statements of historical facts contained in this document, including statements regarding possible or assumed future results of operations, preclinical and clinical studies, business strategies, research and development plans, collaborations and partnerships, regulatory activities and timing thereof, competitive position, potential growth opportunities, use of proceeds and the effects of competition are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause the actual results, performance or achievements of Wave Life Sciences Ltd. (the "Company") to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "contemplate," "believe," "estimate," "predict," "potential" or "continue" or the negative of these terms or other similar expressions. The forward-looking statements in this presentation are only predictions. The Company has based these forward-looking statements largely on its current expectations and projections about future events and financial trends that it believes may affect the Company's business, financial condition and results of operations. These forward-looking statements speak only as of the date of this presentation and are subject to a number of risks, uncertainties and assumptions, including those listed under Risk Factors in the Company's Form 10-K and other filings with the SEC, some of which cannot be predicted or quantified and some of which are beyond the Company's control. The events and circumstances reflected in the Company's forward-looking statements may not be achieved or occur, and actual results could differ materially from those projected in the forward-looking statements. Moreover, the Company operates in a dynamic industry and economy. New risk factors and uncertainties may emerge from time to time, and it is not possible for management to predict all risk factors and uncertainties that the Company may face. Except as required by applicable law, the Company does not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

Paul Bolno, MD, MBA President and CEO

Wave Life Sciences: Recent business highlights

Delivering transformative medicines for patients

Innovative pipeline led by neurology programs

THERAPEUTIC AREA	TARGET	DISCOVERY	PRECLINICAL	CLINICAL	ESTIMATED U.S. PREVALENCE*	PARTNER
NEUROLOGY						
	WVE-120101 mHTT SNP1		Phase 1b/	2a and OLE	~10,000 / ~35,000	Takeda 50:50 option
Huntington's disease	WVE-120102 mHTT SNP2		Phase 1b/:	2a and OLE	~10,000 / ~35,000	Takeda 50:50 option
	mHTT SNP3				~8,000 / ~30,000	Takeda 50:50 option
ALS and FTD	C9orf72				~1,800 (ALS) ~7,000 (FTD)	Takeda 50:50 option
Spinocerebellar ataxia 3	ATXN3				~4,500	Takeda 50:50 option
CNS diseases	Multiple ⁺					Takeda milestones & royalties
OPHTHALMOLOGY						
Retinal diseases	USH2A and RhoP23H					100% global
HEPATIC						
ADAR RNA-editing	Multiple					100% global

*Estimates of U.S. prevalence and addressable population by target based on publicly available data and are approximate; for Huntington's disease, numbers approximate manifest and pre-manifest populations, respectively. *During a four-year term, Wave and Takeda may collaborate on up to six preclinical targets at any one time.

ALS: Amyotrophic lateral sclerosis; FTD: Frontotemporal dementia; CNS: Central nervous system; OLE: Open-label extension

David Gaiero Interim Chief Financial Officer

First quarter 2020 financial results

		Three Months Ended Mar 31, 2020	Three Months Ended Mar 31, 2019
Figures are in thousands			
Revenue	\$4,161	\$3,026	
Operating Expenses:			
Research and Development		41,158	40,113
General and Administrative		12,996	10,901
Total Operating Expenses		54,154	51,014
Loss from Operations		(49,993)	(47,988)
Total Other Income, Net		2,500	3,788
Net Loss		(\$47,493)	(\$44,200)
Net Loss per Share		(\$1.38)	(\$1.36)
As of Mar 31, 2020	Shares Outstanding: 34.6 million	Cash Balance: \$12	1 million

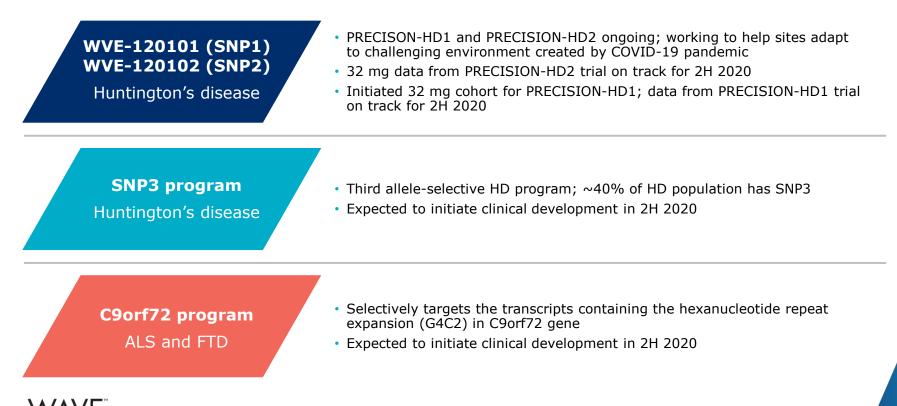
Wave expects that its existing cash and cash equivalents, together with expected and committed cash from its existing collaboration, will enable Wave to fund its operating and capital expenditure requirements into 3Q 2021.

Michael Panzara, MD, MPH Chief Medical Officer

Recent publication contributes to weight of evidence on importance of wild-type huntingtin

nature

Article


Injured adult neurons regress to an embryonic transcriptional growth state

https://doi.org/10.1038/s41586-020-2200-5	Gunnar H. D. Poplawski ¹²³ , Riki Kawaguchi ²³ , Erna Van Niekerk ¹ , Paul Lu ¹⁴ , Neil Mehta ¹ , Philip Canete ¹ , Richard Lie ¹ , Ioannis Dragatsis ⁵ , Jessica M. Meves ¹ , Binhal Zheng ¹⁴ , Giovani Coopola ²³ & Mark H. Tuszynski ¹⁴²			
Received: 12 April 2019				
Accepted: 13 February 2020				
Published online: 15 April 2020	Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust			
Check for updates	on too spine code and the characteristic and restore forelimb function after spinal code regeneration of corticospinal axons and restore forelimb function after spinal code indiversity however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their regenerative transcriptome' after spinal cord injury and MPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (<i>Hc</i>) is a central hub in the regeneration transcriptome (election / <i>Hr</i> : significantly attenuates regenerator which shows that <i>Hr</i> has a key role in neural plasticity after injury.			

- Conditional knock-out of Htt in 4-month old mice (postneuronal development)
- Results suggest that:
 - Htt plays a central role in the regenerating transcriptome (potentially influencing genes such as NFKB, STAT3, BDNF)
 - 2) Htt is essential for regeneration

Indeed, conditional gene deletion showed that Htt is required for neuronal repair. Throughout life, neuronal maintenance and repair are essential to support adequate cellular functioning **7**

Neurology: Clinical pipeline update

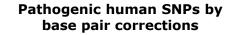
ALS: Amyotrophic lateral sclerosis; FTD: Frontotemporal dementia

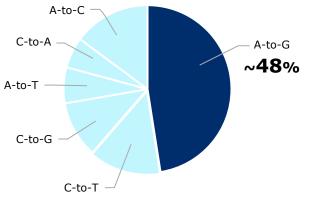
Chandra Vargeese, PhD SVP Drug Discovery

RNA editing: A promising new therapeutic modality for treatment of genetic diseases

Potential benefits versus gene editing

- Ability to use endogenous proteins (e.g. ADAR)
- Ease of delivery
- Titratable, repeatable dosing
- Reversible effects, avoids potential long-term risks associated with permanent off-target DNA editing

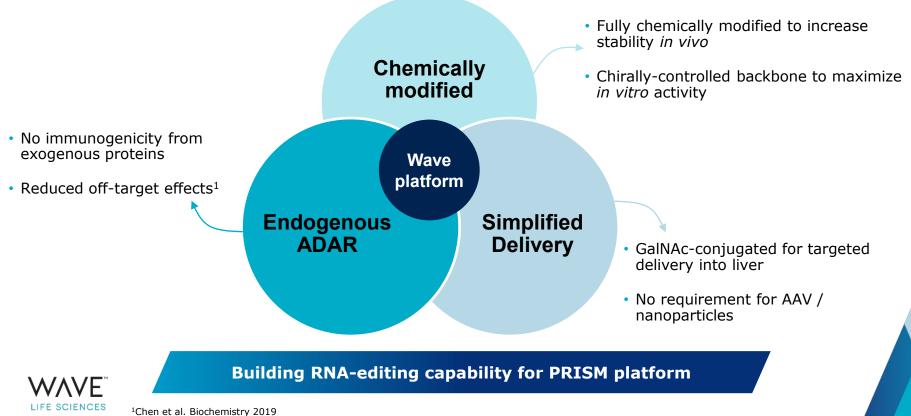

ADAR (adenosine deaminases acting on RNA)



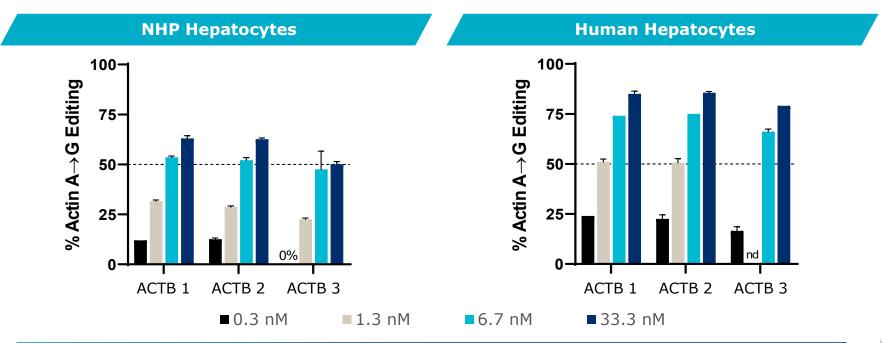
- Endogenous proteins that catalyze A-to-I RNA editing
- Upon translation, I recognized as G, leading to A-to-G editing

A-to-I(G) RNA editing opportunity is significant

- Nearly half of known human genetic pathogenic SNPs are G-to-A mutations¹
- Tens of thousands of potential disease variants A-to-I(G) editing could $target^2$



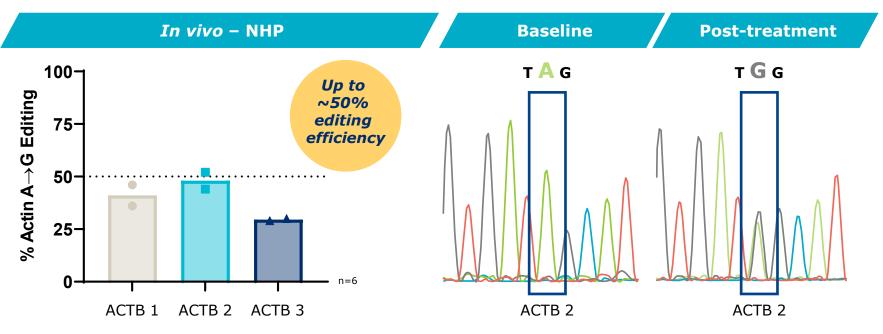
>32,000 pathogenic human SNPs¹


SNP: single nucleotide polymorphism A: Adenosine I: In 1 Gaudeli NM et al. *Nature* (2017). 2 ClinVar database

I: Inosine G: Guanosine

Advantages of Wave ADAR-mediated RNA-editing platform

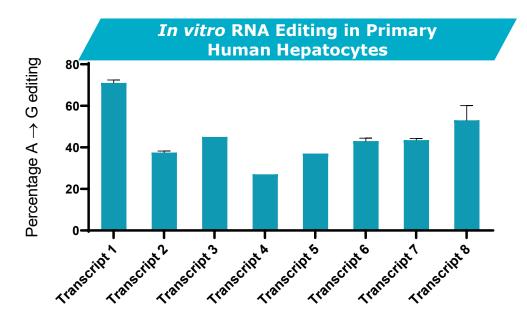
In vitro RNA editing demonstrated in non-human primate and human hepatocytes



Potent, dose-dependent RNA editing demonstrated via free uptake with GalNAc-conjugated stereopure oligonucleotides

NHP: non-human primate; ACTB: Beta-actin; nd= not determined Total RNA was harvested, reverse transcribed to generate cDNA, and the editing target site was amplified by PCR.

First non-human primate RNA editing



Liver biopsies conducted at baseline and 2 days post last dose RNA-editing efficiencies of up to 50% with GalNAc conjugate in liver of NHP

NHP – non-human primate; ACTB: Beta-actin; Left: 5mg/kg SC: Day 1,2,3,4,5; Liver Biopsy for mRNA (ACTB Editing) & eASO Exposure: Day 7 Right: % Editing quantified from Sanger sequencing using EditR program.

RNA-editing design applicable across targets

 Editing achieved across several distinct RNA transcripts

 Supports potential for technology to be applied across variety of disease targets

Additional *in vivo* ADAR-mediated RNA-editing data and first RNA-editing program expected to be announced in 2020

Data presented at 1st International Conference on Base Editing – Enzymes and Applications (Deaminet 2020); See poster for full dataset

Paul Bolno, MD, MBA President and CEO

Anticipated upcoming Wave milestones

Neurology

- 2H 2020: PRECISION-HD2 data from 32 mg cohort in Huntington's disease
- 2H 2020: PRECISION-HD1 topline data, including 32 mg cohort, in Huntington's disease
- 2H 2020: Initiate clinical development of SNP3 program in Huntington's disease
- 2H 2020: Initiate clinical development of C9orf72 program in ALS and FTD

Ophthalmology

• 2020: Advance USH2A and RhoP23H programs

Hepatic

2020: In vivo ADAR editing data

• 2020: Additional in vivo ADAR-mediated RNA-editing data and announce first RNA-editing program

Q&A

Realizing the potential of genetic medicines

For more information:

Kate Rausch, Investor Relations krausch@wavelifesci.com 617.949.4827