UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

Form 8-K

CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): August 25, 2020

WAVE LIFE SCIENCES LTD.

(Exact name of registrant as specified in its charter)

Singapore (State or other jurisdiction of incorporation) 001-37627 (Commission File Number) 00-0000000 (IRS Employer Identification No.)

7 Straits View #12-00, Marina One East Tower Singapore (Address of principal executive offices)

018936 (Zip Code)

Registrant's telephone number, including area code: +65 6236 3388

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions (see General Instruction A.2. below):

□ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

□ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

Dere-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

Derecommencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

	Trading	Name of each exchange
Title of each class	symbol	on which registered
\$0 Par Value Ordinary Shares	WVE	The Nasdaq Global Market

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§240.12b-2 of this chapter).

Emerging growth company \Box

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.

Item 7.01 Regulation FD Disclosure.

On August 25, 2020, Wave Life Sciences Ltd. (the "Company") hosted an Analyst and Investor Research Webcast , and shared a slide presentation that is available on the "For Investors & Media" section of the Company's website at http://ir.wavelifesciences.com/. This presentation is also furnished as Exhibit 99.1 to this Current Report on Form 8-K.

The information in this Item 7.01 shall not be deemed "filed" for purposes of Section 18 of the Securities Exchange Act of 1934, as amended (the "Exchange Act"), or otherwise subject to the liabilities of that section, nor shall it be deemed incorporated by reference in any filing under the Securities Act of 1933, as amended, or the Exchange Act, except as expressly set forth by specific reference in such a filing.

Item 9.01 Financial Statements and Exhibits.

(d) Exhibits

Exhibit No.	Description
99.1	Analyst & Investor Research Webcast for Wave Life Sciences Ltd. dated August 25, 2020

104 Cover Page Interactive Data File (embedded within the Inline XBRL document)

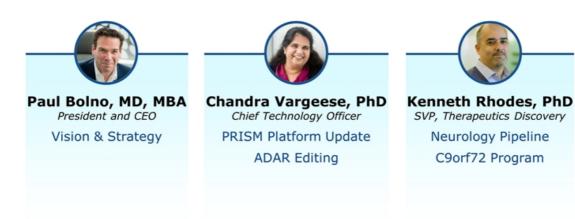
SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

WAVE LIFE SCIENCES LTD.

By: /s/ Paul B. Bolno, M.D. Paul B. Bolno, M.D. President and Chief Executive Officer

Date: August 25, 2020


Forward-looking statements

This document contains forward-looking statements. All statements other than statements of historical facts contained in this document, including statements regarding possible or assumed future results of operations, preclinical and clinical studies, business strategies, research and development plans, collaborations and partnerships, regulatory activities and timing thereof, competitive position, potential growth opportunities, use of proceeds and the effects of competition are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause the actual results, performance or achievements of Wave Life Sciences Ltd. (the "Company") to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "aim," "anticipate," "could," "intend," "target," "project," "contemplate," "believe," "estimate," "predict," "potential" or "continue" or the negative of these terms or other similar expressions. The forward-looking statements in this presentation are only predictions. The Company has based these forward-looking statements largely on its current expectations and projections about future events and financial trends that it believes may affect the Company's business, financial condition and results of operations. These forward-looking statements speak only as of the date of this presentation and are subject to a number of risks, uncertainties and assumptions, including those listed under Risk Factors in the Company's Form 10-K and other filings with the SEC, some of which cannot be predicted or quantified and some of which are beyond the Company's control. The events and circumstances reflected in the Company's forward-looking statements may not be achieved or occur, and actual results could differ materially from those projected in the forward-looking statements. Moreover, the Company operates in a dynamic industry and economy. New risk factors and uncertainties may emerge from time to time, and it is not possible for management to predict all risk factors and uncertainties that the Company may face. Except as required by applicable law, the Company does not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.

Today's speakers

Conclusion and Q&A

Wave Life Sciences

Building a fully integrated genetic medicines company

We envision a future in which the diagnosis of a genetically-defined disease leads to effective and available treatment, providing patients and their families the ability to realize a brighter future

Apply innovative nucleic acid chemistry and deep biological insights to develop transformative medicines for millions of people living with devastating conditions

Wave Life Sciences

Building a fully integrated genetic medicines company

٠

Opportunity

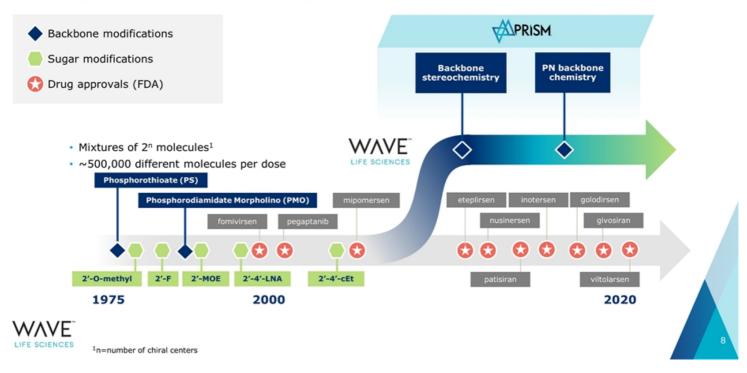
- >6,000 genetically defined diseases
- Increases in genetic testing
- Greater understanding of genetic drivers of disease and definition at molecular level

Many diseases beyond the reach of existing treatments

Unlocking the genetic medicine opportunity

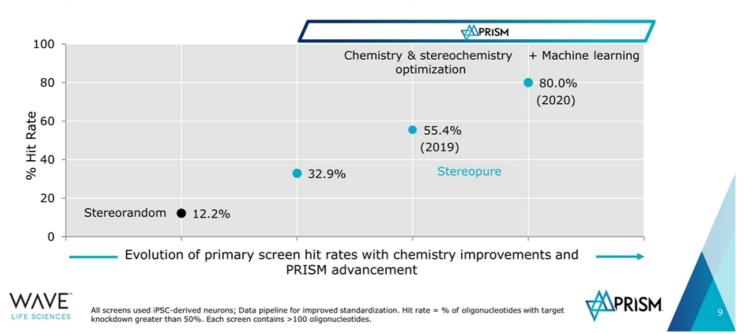
- Evolution of PRISM
 - Stereochemistry
 - New ADAR editing modality
 - Advances in oligonucleotide design

Addressing genetic mutations at RNA level


- Regulate dose and frequency
- Avoid permanent off-target effects

Leveraging PRISM to derive insights from chemistry and apply them to biology

PRISM platform designed to achieve four goals



PRISM has unlocked novel and proprietary advances in oligonucleotide design

PRISM platform advancements

Primary screen hit rates in neurons far above industry standard hit rates

Today: Building a fully integrated genetic medicines company focused on neurology

Central nervous system

<2 years exclusivity remaining in collaboration

Committed cash: at least \$60M in research support over 4 years

Potential additional cash inflows:

Category 1 programs Category 2 programs

Six programs: HD (SNP1, SNP2, SNP3) C9-ALS, C9-FTD SCA3

Up to six preclinical targets⁺ (Alzheimer's, Parkinson's, other CNS disorders)

Milestones, global 50:50 profit split

>\$1B in precommercial milestones & royalties

†During a four-year term, Wave and Takeda may collaborate on up to six preclinical targets at any one time. ALS: Amyotrophic lateral sclerosis; FTD: Frontotemporal dementia; SCA3: Spinocerebellar ataxia 3

Looking ahead: Building a fully integrated genetic medicines company focused on neurology

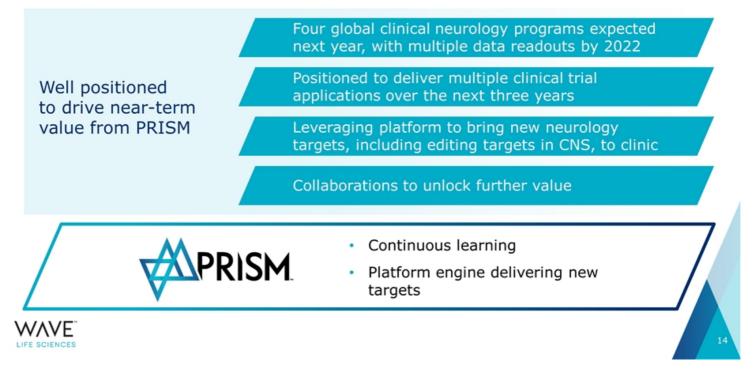
Neurology pipeline expansion

- Employing new chemistries and modalities to expand wholly-owned neurology pipeline
- ADAR editing to access new target classes and new pathways
- PRISM enables access to larger set of potential indications than other existing platforms

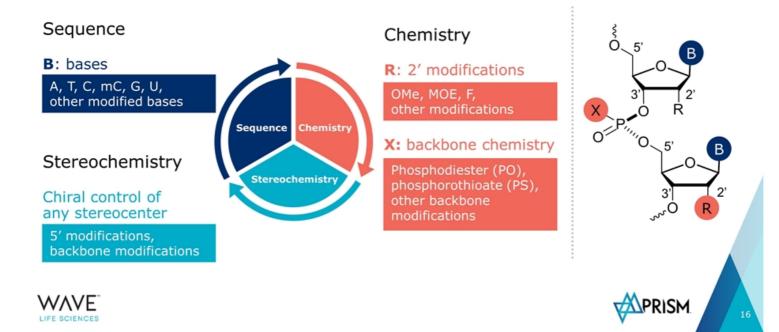
Leveraging platform discovery research to build out areas of potential new biology

Opportunities outside of neurology

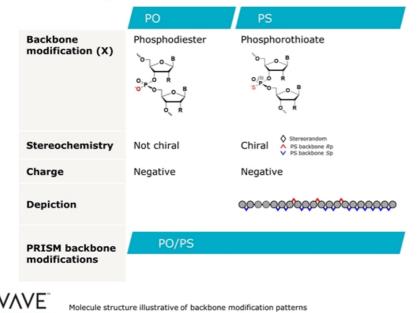
- Hepatic diseases
- Ophthalmology
- Muscle diseases
- Additional therapeutic areas

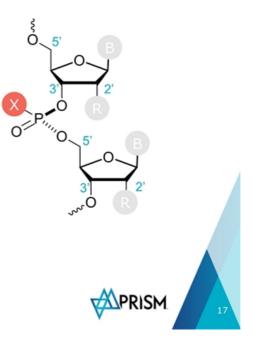


Innovative pipeline led by neurology programs

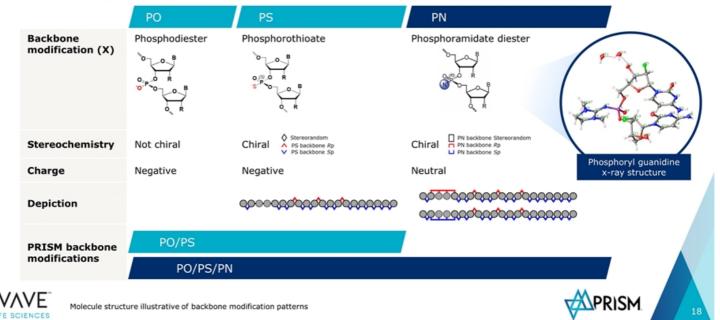

THERAPEUTIC ARI TARGET	EA /	PRISM	DISCOVERY	PRECLINICAL	CLINICAL	PARTNER
NEUROLOGY						
Huntington's diseas mHTT SNP1	e	•		v	VE-120101	
Huntington's diseas mHTT SNP2	e	•		v	VE-120102	
Huntington's diseas mHTT SNP3	e	• •		WVE-003		Takeda 50:50 option
ALS and FTD C9orf72		• •		WVE-004		
SCA3 ATXN3		• •				
CNS diseases Multiple†		• •				Takeda milestones & royalties
ADAR editing Multiple		• •				100% global
HEPATIC						
ADAR editing Undisclosed		• •				100% global
OPTHALMOLOGY						
Retinal diseases USH2A and RhoP23H		• •				100% global
4	PRISM	🔶 Stereopure	PN chemistry			
ALS:		c lateral sclerosis; F		to six preclinical targets at any one SCA3: Spinocerebellar ataxia 3 CN		

Wave Life Sciences: Redefining the potential of RNA therapeutics in neurology



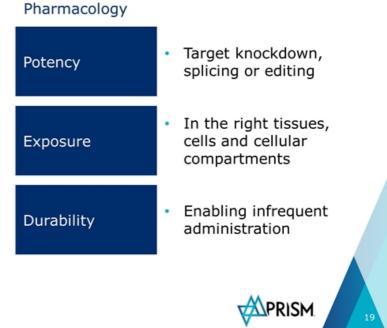

PRISM platform enables rational drug design

Focused on backbone chemistry modifications amenable to all modalities


Backbone linkages

Expanding repertoire of backbone modifications with novel PN backbone chemistry

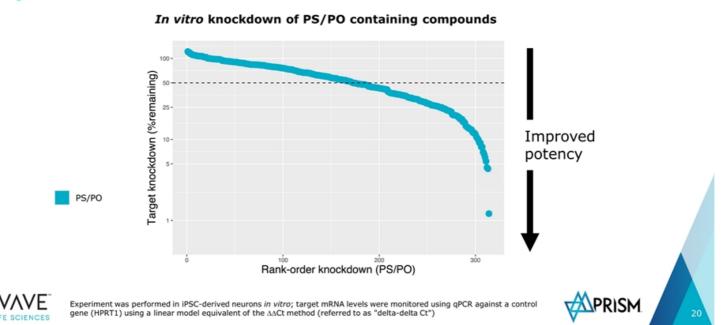
Backbone linkages



Across many modalities, PN chemistry enhances potency, exposure, and durability

Modality

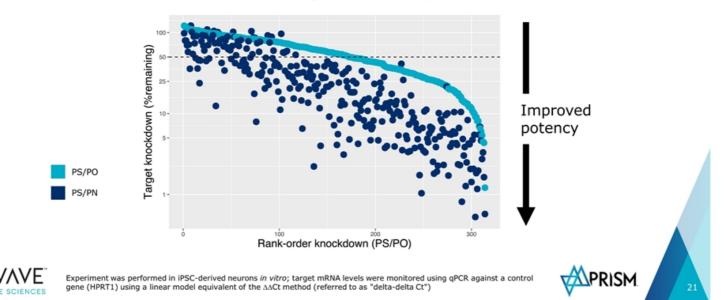
WAVE SCIENCES


Silencing	 Efficient engagement of RNase H or Ago2 	Po
Splicing	 Efficient uptake in the cell nucleus 	E
Editing	 Efficient engagement of ADAR 	D

Screen of stereopure PS/PO molecules ranked by potency

Silencing	Potency
	Exposure
Editing	Durability

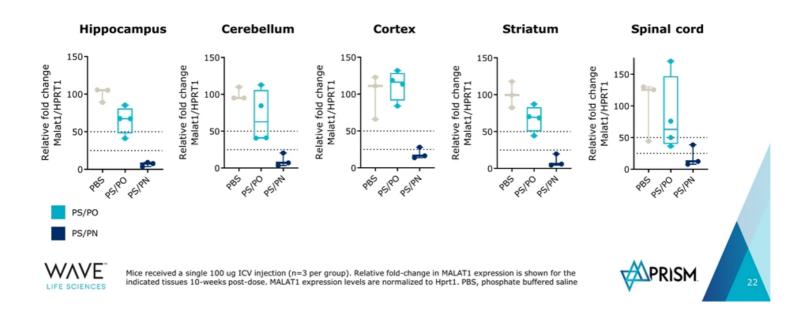
Target knockdown in vitro in neurons



Rational design using PN chemistry backbone modification increases potency on average

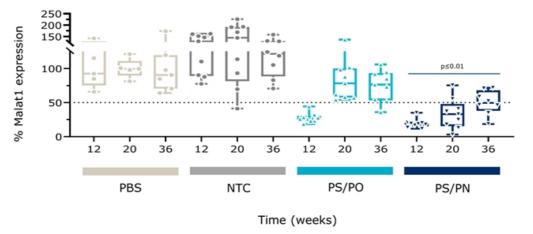
SilencingPotencySplicingExposureEditingDurability

Target knockdown in vitro in neurons


In vitro knockdown of PS/PO containing compounds compared to PS/PN compounds

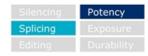
PN chemistry increases durability across CNS tissues

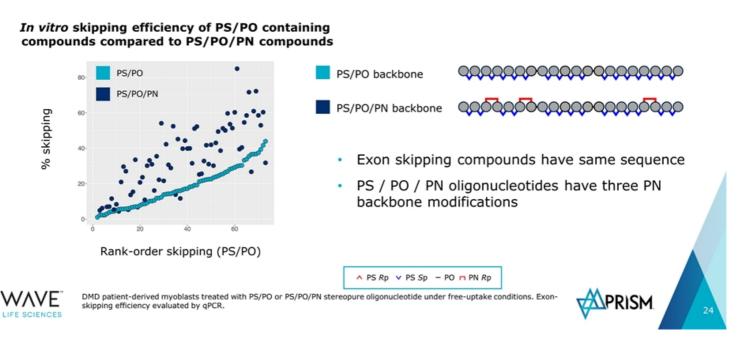
SilencingPotencySplicingExposureEditingDurability

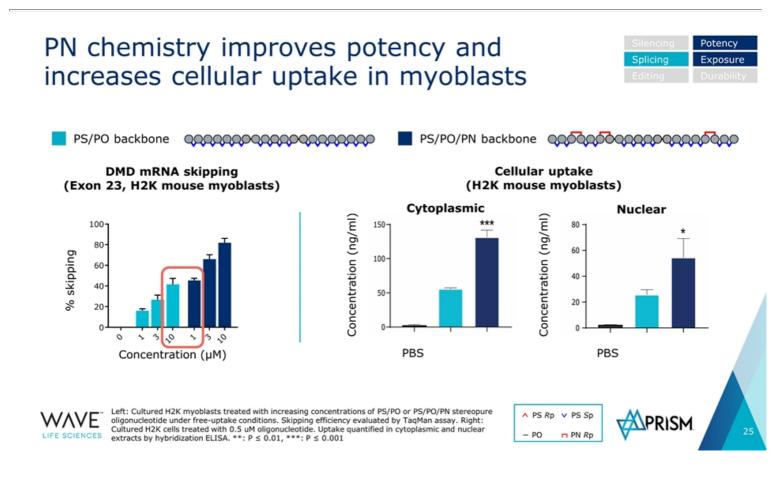

Malat1 knockdown at 10 weeks in CNS (100 µg)

Durable Malat1 knockdown through 9 months with PN chemistry

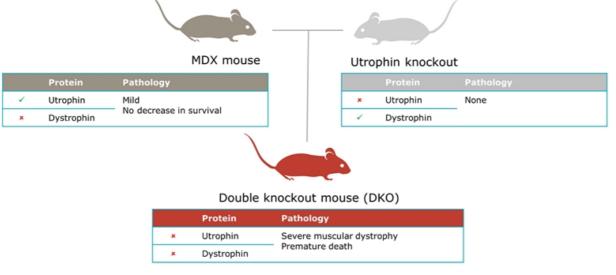
~50% Malat1 knockdown at 36 weeks in the posterior of the eye




Compound or PBS (1 x 50 ug IVT) was delivered to C57BL6 mice. Relative percentage of Malat1 RNA in the posterior of the eye (retina, choroid, sciera) to PBS-treated mice is shown at 12, 20 and 36 weeks post-single injection. PBS = phosphate buffered saline; NTC= chemistry matched non-targeting control

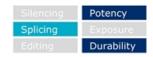


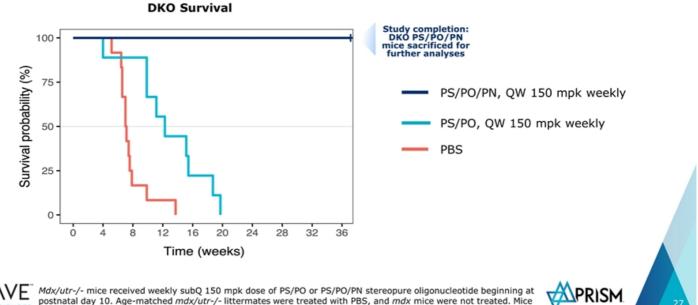
Improved exon skipping with PN chemistry


Exon skipping plotted for compounds with same sequence

DKO model to assess PN chemistry on survival

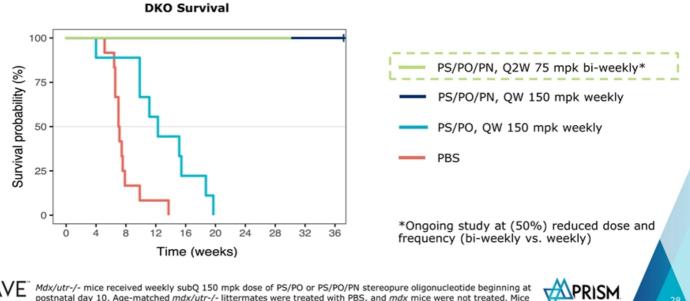
Silencing	Potency
Splicing	Exposure
	Durability





DKO model generation and in vivo studies were performed by our collaborator Professor Matthew Wood at the University of Oxford; DKO PS/PO/PN and DKO PS/PO oligonucleotides have same sequence

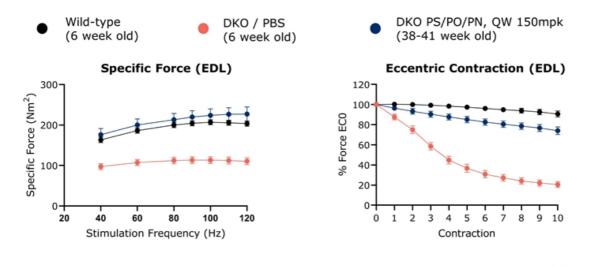
Step-change in survival observed in DKO model using PN chemistry

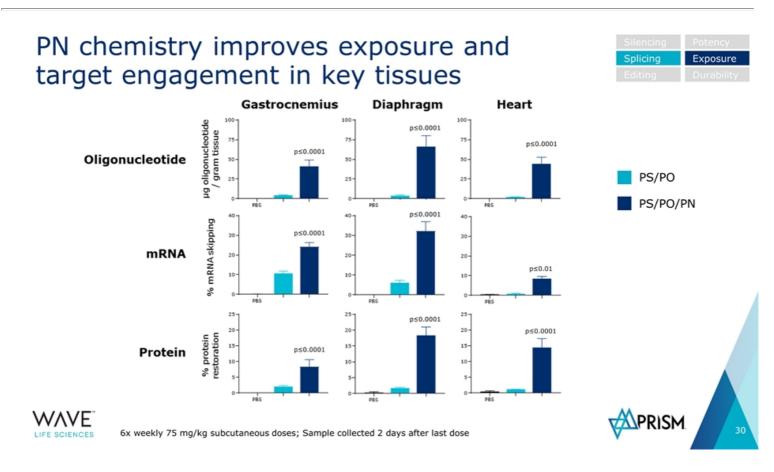


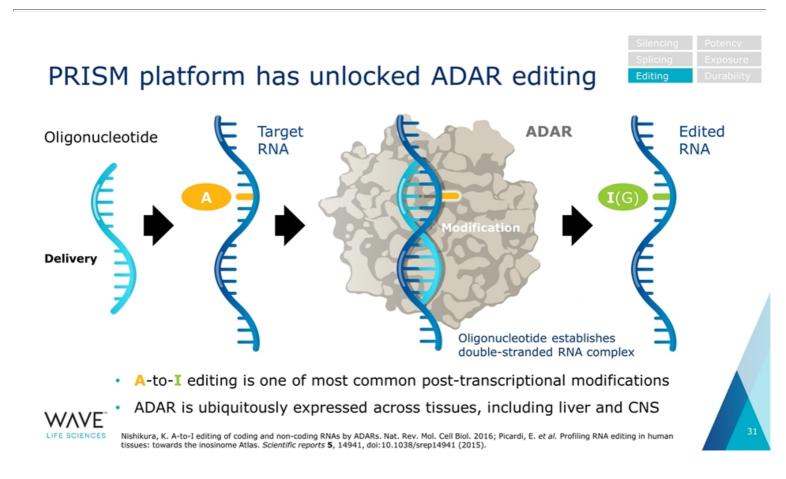
LIFE SCIENCES Mdx/utr-/- mice received weekly subQ 150 mpk dose of PS/PO or PS/PO/PN stereopure oligonucleotide beginning at postnatal day 10. Age-matched mdx/utr-/- littermates were treated with PBS, and mdx mice were not treated. Mice with severe disease were euthanized. DKO: PS/PO/PN n=8, PS/PO n=9, PBS n=12

Similar survival trend observed with 75% less total dose

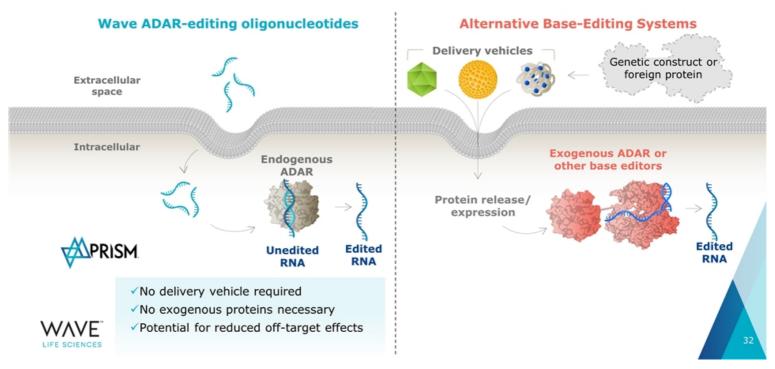
Silencing	Potency
Splicing	Exposure
Editing	Durability

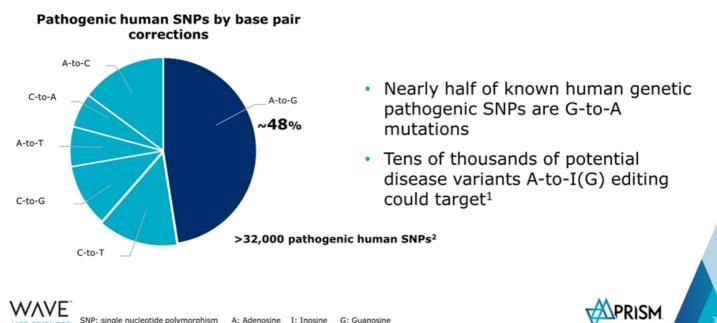



Restoration of wild-type muscle function using PS/PO/PN compound


Silencing	Potency
Splicing	Exposure
Editing	Durability

MPRISM


Mdx/utr-/- mice received weekly subQ 150 mpk dose of PS/PO/PN stereopure oligonucleotide beginning at postnatal day 10. Agematched mdx/utr-/- littermates were treated with PBS, and wild-type C57BL10 mice were not treated. Electrophysiology to measure specific force and eccentric contraction performed at Oxford University based on Goyenvalle et al., 2010 Mol Therapy 18(1), 198-205.


PRISM enables practical approach to RNA editing without need for viruses or exogenous protein

Editing

ADAR amenable diseases represent a sizeable opportunity

Silencing	Potency
Splicing	Exposure
Editing	Durability

SNP: single nucleotide polymorphism A: Adenosin ¹ClinVar database ²Gaudeli NM et al. *Nature* (2017). A: Adenosine I: Inosine G: Guanosine LIFE SCIENCES

RNA editing opens many new therapeutic applications

Examples:

Silencing	Potency
Splicing	Exposure
Editing	Durability

Restore protein function

- Fix nonsense and missense mutations that cannot be splice-corrected
- Remove stop mutations
- Prevent protein misfolding and aggregation

Modify protein function

- Alter protein processing (e.g. protease cleavage sites)
- Protein-protein interactions domains
- Modulate signaling pathways

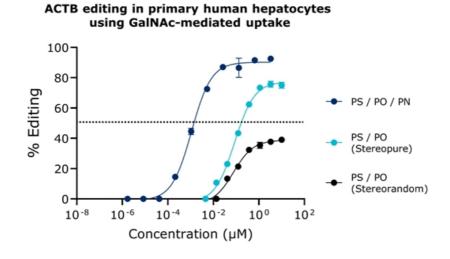
Ion channel permeability

Protein upregulation

- miRNA target site modification
- Modifying upstream ORFs
- Modification of ubiquitination sites

Examples:

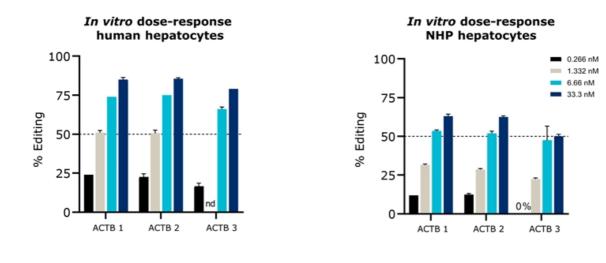
Recessive or dominant genetically defined diseases


Examples:

Silencing Potency Splicing Exposure Editing Durability

PN chemistry improves editing efficiency

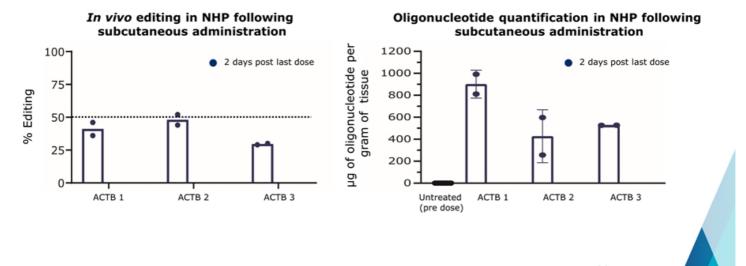
PN backbone modification increased both potency and editing efficiency in vitro


Data from independent experiments; Total RNA was harvested, reverse transcribed to generate cDNA, and the editing target site was amplified by PCR and quantified by Sanger sequencing

Significant ADAR editing demonstrated in Silence Splice Sp

ACTB GalNAc-conjugated oligonucleotides with stereopure PN chemistry modification

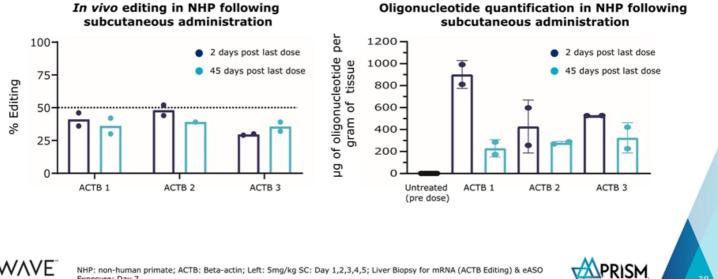
Potency


NHP: non-human primate; ACTB: Beta-actin; nd= not determined Total RNA was harvested, reverse transcribed to generate cDNA, and the editing target site was amplified by PCR.

Efficient ADAR editing translated in vivo in non-human primate study

MPRISM

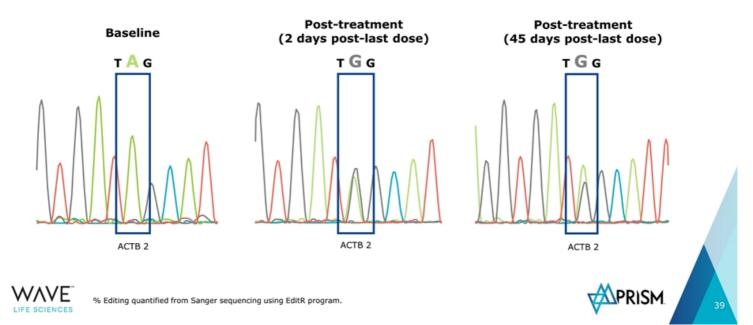
Up to 50% editing efficiency observed at Day 7, 2 days post last dose



NHP: non-human primate; ACTB: Beta-actin; Left: 5mg/kg SC: Day 1,2,3,4,5; Liver Biopsy for mRNA (ACTB Editing) & eASO Exposure: Day 7

Sustained editing in vivo in non-human primates after 45 days

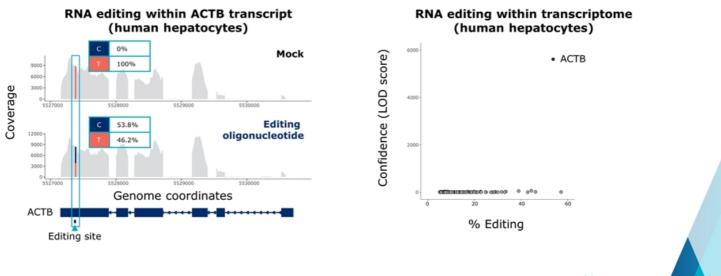
Substantial and durable editing out to at least Day 50, 45 days post last dose


NHP: non-human primate; ACTB: Beta-actin; Left: 5mg/kg SC: Day 1,2,3,4,5; Liver Biopsy for mRNA (ACTB Editing) & eASO Exposure: Day 7

SCIENCES

Sustained editing *in vivo* in non-human primates after 45 days

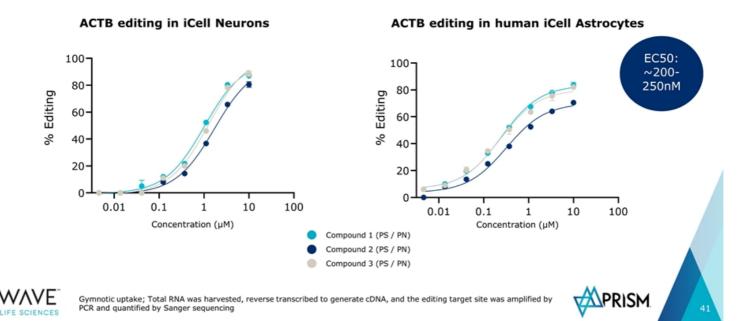
Silencing Potency Splicing Exposure Editing Durability


Efficient and potent editing of ACTB demonstrated with Sanger sequencing

Silencing	Potency
Splicing	Exposure
Editing	Durability

ADAR editing is highly specific

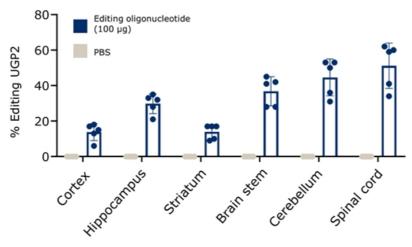
LIFE



Human hepatocytes were dosed with 1um oligonucleotide, 48 hours later RNA was collected and sent for RNA sequencing. RNAseq conducted using strand-specific libraries to quantify on-target ACTB editing and off-target editing in primary human hepatocytes; plotted circles represent sites with LOD>3 WAVE SCIENCES

Efficient and potent editing observed in neurons and astrocytes

SilencingPotencySplicingExposureEditingDurability



Opening the door to ADAR editing in CNS

First in vivo study in proprietary transgenic model yields efficient editing across all tissues

In vivo CNS editing in proprietary hADAR transgenic mouse (1 week)

hADAR: human ADAR; UGP2: Glucose Pyrophosphorylase 2; CNS: central nervous system; Editing observed across all tested tissues of human-ADAR-transgenic mice by ICV injection. 5 mice in each group were injected with PBS or a single 100uG dose on day 0. Animals were necropsied on day 7. RNA was harvested and editing measured by Sanger sequencing.

Continued evolution of PRISM platform

Sustained investment has yielded novel modality and pharmacology advances

- PN chemistry is a novel backbone chemistry modification
 - Preclinical data demonstrates PN chemistry can enhance potency, durability and exposure across three modalities (silencing, splicing, editing)
- Platform innovations have unlocked ADAR editing modality
 - Efficient and durable editing demonstrated in vivo in NHPs
 - Expect to announce first ADAR editing program in a hepatic indication in 2020
- Moving ADAR editing quickly into neurology
 - Editing demonstrated in neurons and astrocytes *in vitro* and across CNS tissue types *in vivo* in first transgenic human ADAR mouse study
 - Ongoing work to unlock new neurology targets with ADAR editing

Neurology pipeline & C9orf72 program

Kenneth Rhodes, PhD SVP, Therapeutics Discovery

Focus on neurological diseases

- Neurological diseases represent one of the greatest medical challenges of our time
- PRISM can deliver oligonucleotide drug candidates that directly address the genetic drivers of neurologic diseases
- PRISM-derived oligonucleotides access neurons and glia without need for transfection, encapsulation or other modifications
- The range of modalities offered by PRISM (silencing, splicing and ADAR editing), unlocks therapeutic opportunities in a broad range of neurological diseases

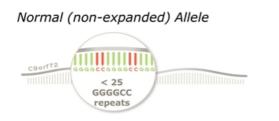
Diverse pipeline of disease-modifying therapies

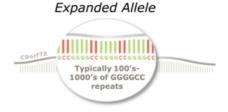
THERAPEUTIC AREA / TARGET	DISCOVERY STAGE	PRECLINICAL STAGE	PHASE 1/2 CLINICAL STAGE
EUROLOGY			
untington's disease HTT SNP1			WVE-120101
untington's disease HTT SNP2			WVE-120102
luntington's disease hHTT SNP3		WVE-003	
NLS and FTD 9orf72		WVE-004	
CA3 TXN3			
NS diseases lultiple†			
ADAR editing Aultiple			
MPRISM ◆ PS/F	PO backbone PS/PO/PN backbone		

WVE-004: C9orf72 program for ALS and FTD

	PRECLINICAL STAGE	PHASE 1/2 CLINICAL STAGE
	WVE-004	

C9-ALS and C9-FTD: Manifestations of a clinical spectrum

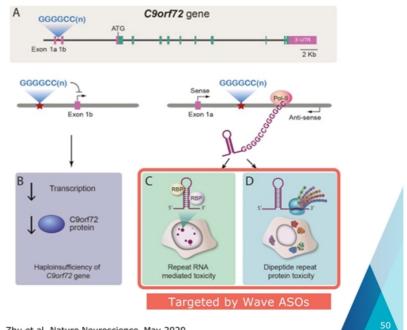

	Disease	C9 specific US population	Mean disease duration	Standard of care
C9-ALS	 Fatal neurodegenerative disease Progressive degeneration of motor neurons in brain and spinal cord 	~2,000	3.1 years	Significant unmet need despite two approved therapies
C9-FTD	 Progressive neuronal atrophy in frontal/temporal cortices Personality and behavioral changes, gradual impairment of language skills 	~10,000	6.4 years	No approved disease modifying therapies


Two devastating diseases with a shared genetic basis

ALS: Amyotrophic lateral sclerosis; FTD: Frontotemporal dementia Sources: Cammack et al, Neurology, October 2019. Moore et al, Lancet Neurology, February 2020

C9orf72 repeat expansions: a critical genetic driver of ALS and FTD

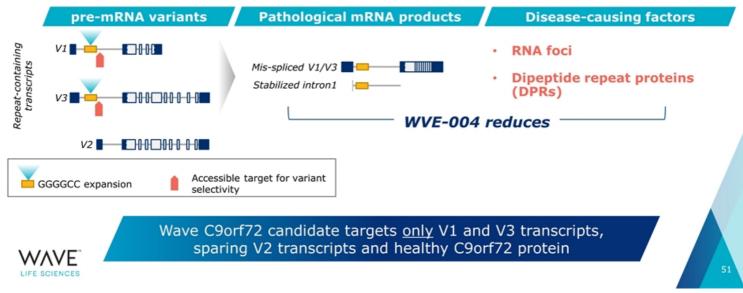
- C9orf72 hexanucleotide repeat expansions (GGGGCC) are the strongest known risk factor for sporadic and inherited forms of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)
- The C9orf72 repeat expansions also lead to accumulation of repeat-containing transcripts, nuclear sequestration of RNA binding proteins and synthesis of toxic dipeptide-repeat (DPR) proteins
- The C9orf72 repeat expansions lead to reduced expression of wild-type C9orf72 and to cellular changes that reduce neuronal viability

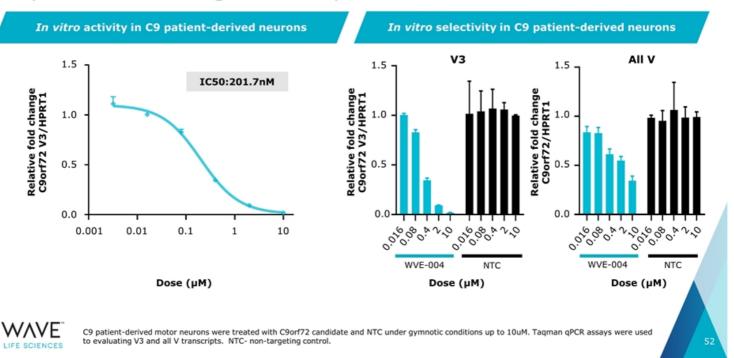

Sources: DeJesus-Hernandez et al, Neuron, 2011. Renton et al, Neuron, 2011. Zhu et al, Nature Neuroscience, May 2020

C9orf72 repeat expansions: mechanisms of cellular toxicity

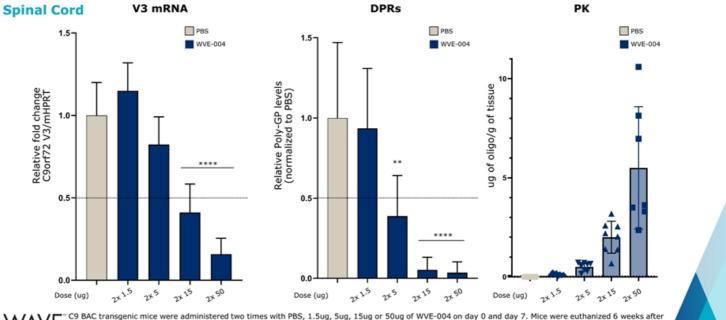
- C9-ALS and C9-FTD may be caused by multiple factors:
 - Insufficient levels of C9orf72 protein
 - Accumulation of repeat-containing RNA transcripts
 - Accumulation of aberrantly translated DPR proteins
- Recent evidence suggests lowering C9orf72 protein exacerbates DPRdependent toxicity

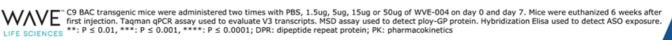
Variant-selective targeting could address multiple potential drivers of toxicity



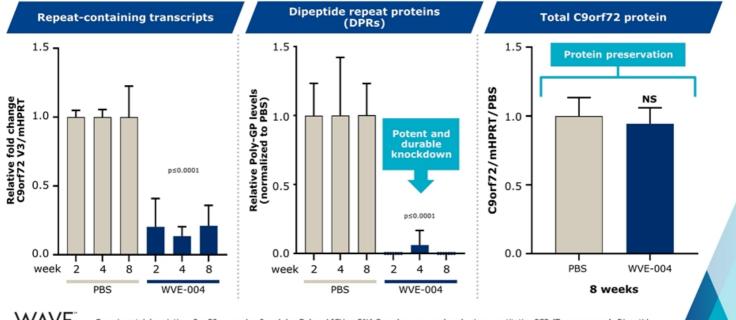

Sources: Gitler et al, Brain Research, September 2016. Zhu et al, Nature Neuroscience, May 2020

C9orf72 targeting strategy spares C9orf72 protein


- Normal C9orf72 allele produces three mRNA transcripts (~80% are V2, ~20% are V1 and V3)
- Pathological allele with expanded repeat leads to healthy V2 and pathological V1 and V3 transcript by-products

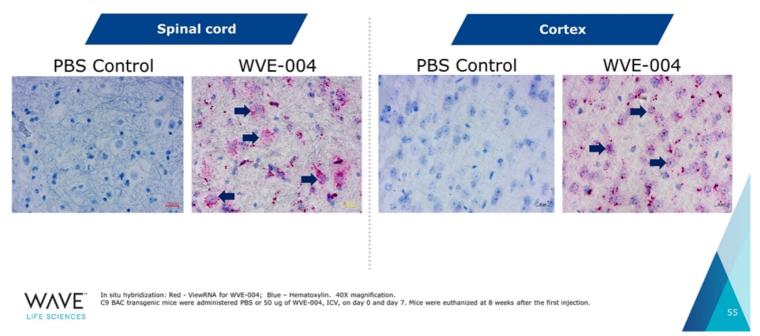


WVE-004: Potent and selective knockdown of repeat-containing transcripts *in vitro*

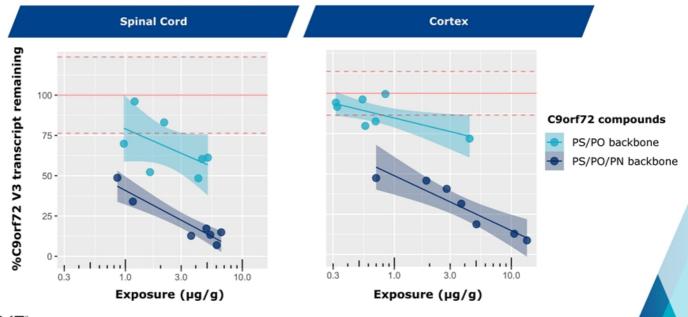


WVE-004 shows dose dependent knockdown of V3 mRNA and DPRs in C9 transgenic mouse model

WVE-004: Potent and selective knockdown of repeat transcripts and DPRs in spinal cord

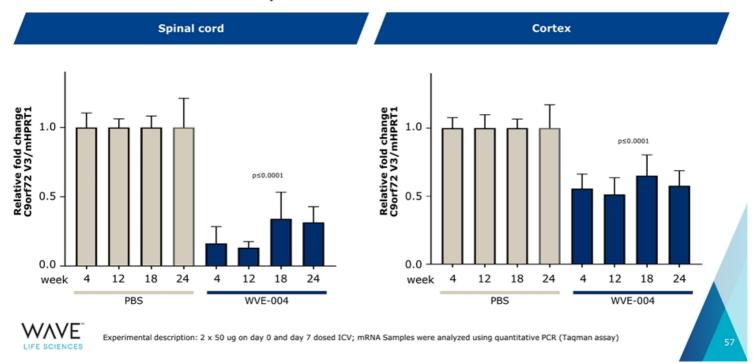


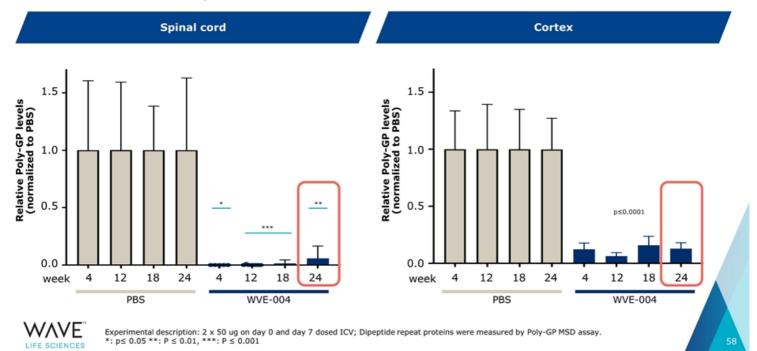
LIFE SCIENCES


Experimental description: 2 x 50 ug on day 0 and day 7 dosed ICV; mRNA Samples were analyzed using quantitative PCR (Taqman assay), Dipeptide repeat proteins were measured by Poly-GP MSD assay. Protein samples were measured by Western Blot. NS: not significant

WVE-004 reaches target brain regions and cell types *in vivo*

In situ hybridization of WVE-004 in spinal cord and cortex at 8 weeks


PN backbone chemistry: Improved potency among C9orf72-targeting oligonucleotides *in vivo*



Mice received 2 x 50 ug ICV doses on days 0 & 7; mRNA from spinal cord and cortex quantified by PCR (Taqman assay) 8 weeks later. Oligonucleotide concentrations quantified by hybridization ELISA. Graphs show robust best fit lines with 95% confidence intervals (shading) for PK-PD analysis.

Durable knockdown of repeat transcripts *in vivo* after 6 months in spinal cord and cortex

Durable knockdown of DPRs *in vivo* after 6 months in spinal cord and cortex

WVE-004 proof-of-concept study to include both ALS and FTD patients

- Patients with documented C9orf72 expansion and confirmed ALS or FTD diagnosis
- Single and multiple ascending doses to be explored
- Safety and tolerability
- · Pharmacodynamic effects on key biomarkers while on treatment
 - PolyGP
 - NfL
- Key exploratory clinical outcome measures
 - ALSFRS-R and CDR-FTLD

CTA submission expected in 4Q 2020

CTA: clinical trial application; NfL: neurofilament light chain; ALSFRS: Amyotrophic Lateral Sclerosis Functional Rating Scale; CDRFTLD: Clinical Dementia Scale – frontotemporal lobar degeneration

PRISM platform enables further pipeline expansion in neurology

PRISM modalities

- Silencing
- Editing
- Splicing

PRISM evolution

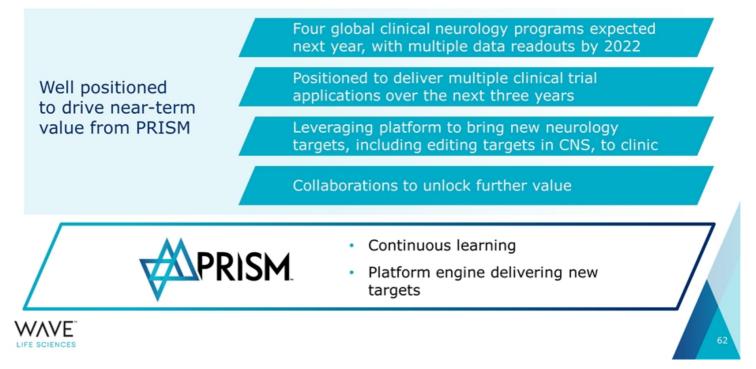
- Stereochemistry
- PN backbone chemistry

Wave & Takeda CNS programs

- Multiple Category 2 programs ongoing[†]
- Novel PN chemistry an important tool

Unlocking new targets in neurological diseases

Focus on genetically validated mechanisms and diseases with high unmet need


[†]During a four-year term, Wave and Takeda may collaborate on up to six preclinical targets at any one time.

Conclusion

Paul Bolno, MD, MBA President and CEO

Wave Life Sciences: Redefining the potential of RNA therapeutics in neurology

