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Forward-looking statements

This document contains forward-looking statements. All statements other than statements of historical facts contained in this 
document, including statements regarding possible or assumed future results of operations, preclinical and clinical studies, business 
strategies, research and development plans, collaborations and partnerships, regulatory activities and timing thereof, competitive 
position, potential growth opportunities, use of proceeds and the effects of competition are forward-looking statements. These 
statements involve known and unknown risks, uncertainties and other important factors that may cause the actual results, 
performance or achievements of Wave Life Sciences Ltd. (the “Company”) to be materially different from any future results, 
performance or achievements expressed or implied by the forward-looking statements. In some cases, you can identify forward-
looking statements by terms such as “may,” “will,” “should,” “expect,” “plan,” “aim,” “anticipate,” “could,” “intend,” “target,” “project,” 
“contemplate,” “believe,” “estimate,” “predict,” “potential” or “continue” or the negative of these terms or other similar expressions. The 
forward-looking statements in this presentation are only predictions. The Company has based these forward-looking statements 
largely on its current expectations and projections about future events and financial trends that it believes may affect the Company’s 
business, financial condition and results of operations. These forward-looking statements speak only as of the date of this 
presentation and are subject to a number of risks, uncertainties and assumptions, including those listed under Risk Factors in the 
Company’s Form 10-K and other filings with the SEC, some of which cannot be predicted or quantified and some of which are 
beyond the Company’s control. The events and circumstances reflected in the Company’s forward-looking statements may not be 
achieved or occur, and actual results could differ materially from those projected in the forward-looking statements. Moreover, the 
Company operates in a dynamic industry and economy. New risk factors and uncertainties may emerge from time to time, and it is 
not possible for management to predict all risk factors and uncertainties that the Company may face. Except as required by 
applicable law, the Company does not plan to publicly update or revise any forward-looking statements contained herein, whether as 
a result of any new information, future events, changed circumstances or otherwise.
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Disclosures

• Ian Harding is an employee of Wave Life Sciences
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Wave’s ability to rationally design oligonucleotides enables 
access to unique disease targets

O

O

B

R

O

P
O

-
X

O

O

B

R

O

5’

2’3’

5’

3’ 2’
R

X

B

B

R

Phosphoryl guanidine
O: Phosphodiester
S: Phosphorothioate
N: Phosphoryl guanidine

Base

2’-Ribose

Stereochemistry and 
backbone modification

B

R

X



5

Unlocking RNA editing with PRISMTM to develop AIMers: A-to-I 
editing oligonucleotides

1Woolf et al., 1995 Proc Natl Assoc Sci 92:8298-8302; 
Monian et al., 2022 Nature Biotech published online Mar 7, 2022 doi: 10.1038.s41587-022-01225-1
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Overview

Optimizing editing activity with PRISMTM1

Achieving RNA editing in multiple tissues2

Applications3
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Overview

Optimizing editing activity with PRISMTM1
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Enhancing editing efficiency across nearest neighbors
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Approach: Structure-activity relationship analysis of AIMer backbone, sugar and orphan base   

Optimizing orphan site base1

Optimizing sugar and backbone              
modification pattern2

AIMer-S Pattern1  AIMer-D Pattern

1Monian et al., 2022 Nature Biotech published online Mar 7, 2022 doi: 10.1038.s41587-022-01225-1

N-3-Uracil

PRISMTM



9

N3U and AIMer-D chemistry mask increase editing across 
nearest neighbor sequences

AIMer-S AIMer-D
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Primary mouse hepatocytes from human ADAR1 transgenic mice were treated with 3.0 uM AIMers (unconjugated), directed toward the Ugp2 mRNA, that varied by edit region 
sequence, AIMer chemistry design, and edit site base for 72 hours. UGP2 RNA editing was quantified by Sanger sequencing.
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N3U supports enhanced editing efficiency in vivo
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Left: GalNAc-conjugated AIMers targeting Ugp2 were dosed, for 72 hours prior to editing assay, in primary hepatocytes isolated from hADAR1-p110 hemizygous knock-in 
mice. Data shown are the mean ± SEM, n=3 for each condition. Dashed lines represent 95% confidence intervals. Right: 8-week-old transgenic human ADAR-p110 knock-in 
mice were dosed with PBS (black) or GalNAc-conjugated oligonucleotide (10mg/kg) subcutaneously on day 0, 2, and 4, and evaluated for UGP2 editing on day 7 (n=5/group). 
NTC: Non-targeting control, targeting ACTB. **** p<0.0001
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Overview

1

Achieving RNA editing in multiple tissues2
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Systemic in vivo editing without delivery vehicles

Editing: Potent, durable, specific A  I (G) RNA editing 

Delivery: Efficient RNA editing after subcutaneous injection (no 
delivery vehicle)

Substantial RNA editing across multiple mouse tissues following 
single subcutaneous dose of Ugp2 AIMer

Specific liver associated cells

Editing without GalNAc conjugation
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NK cell 
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Cholan-
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Wild-type mice

Single dose of 100 mg/kg unconjugated Ugp2 AIMer, 7 days post dose; Results presented as mean +/- SD. WAT: White adipose tissue; BAT: Brown adipose tissue; LSEC 
cells: Liver Sinusoidal Endothelial Cells.
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Durable editing observed out to 4 months post-single dose 

Peak editing observed 4-weeks post-single ICV dose across tissues

Cortex Hippocampus Striatum Brain stem Cerebellum Spinal cord

30% >40% 25% >40% 50% >65%Peak
editing

hADAR mice

Transgenic human ADAR mice were administered 100 mg AIMer or PBS on day 0 and evaluated for Ugp2 RNA editing across CNS tissues at 1, 4, 8, 12 and 16-weeks 
post dose. Percentage Ugp2 RNA editing determined by Sanger sequencing. Stats: 2-way ANOVA with post-hoc comparison to PBS (n=5 per time point per treatment) 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ICV: intracerebroventricular

Extrahepatic
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AIMer directs widespread RNA editing in CNS of NHP

In vivo CNS editing in NHP 
(ACTB, 1 week)

0

20

40

60

80

%
 A

C
TB

 E
di

tin
g

AIMer (single, 10 mg IT dose)

PBS

aCSF

ACTB AIMer

Distribution to Frontal Cortex

ACTB AIMer

10X 40X

40X 10X

ACTB AIMer
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1-week post dose. Left: Sections from treated NHPs. ViewRNA (red, Fast red) was used to detect oligonucleotides; sections are counterstained with hematoxylin (blue 
nuclei). Right: Percentage of UGP2 editing determined by Sanger sequencing. IT: Intrathecal; SN: Substantia Nigra
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ADAR editing for therapeutic applications

1Monian et al., 2022. Nat Biotechnol DOI: 10.1038/s41587-022-01225-1
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AIMers can restore protein expression 

Left: Primary cortical neurons from Mecp2R168X knock-in (KI) mice (E18), treated gymnotically with AIMer for 5 days (mean ± SEM; n=3 per dose/condition). Right, top: Western 
blot of nuclear extracts from mouse primary cortical neurons (E18) treated gymnotically with 10 µM AIMer. Right, bottom: Primary cortical neurons from Mecp2R168X KI mice (E18) 
treated with PBS or gymnotic 1 µM AIMer for 5 days. Immunofluorescence staining for nuclei (DAPI, blue) and MECP2 (magenta) Magnification 40X. RTT: Rett Syndrome. NTC: 
non-targeting control.
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AIMers disrupt protein-protein interaction in vivo

hADAR C57BL/6 mice dosed subQ (days 0, 2, 4) at 10mg/kg GalNAc-conjugated AIMers. Livers harvested (day 7), analyzed for editing and Nqo1 expression via Sanger 
sequencing or qPCR, respectively. Data analyzed via One-way ANOVA with Tukey’s multiple comparison test. Asterisks indicate statistical significance to PBS-treated animals as 
follows: * = p<0.05; ** = p<0.01; *** = p<0.001; **** = p<0.0001
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Summary

• Optimized AIMer design enhances editing in vitro and in vivo
• Design improvements include N3U orphan base modification and optimization of sugar 

modification and backbone modification patterns
• Editing efficiency improved across nearest neighbor combinations

• AIMers support RNA editing across multiple extrahepatic tissues including kidney, lung, and the CNS
• AIMer-based editing in the CNS is observed in mice and NHPs and is durable up to 16 weeks in mice
• AIMers can be used to disrupt protein-protein interactions and restore protein expression.
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